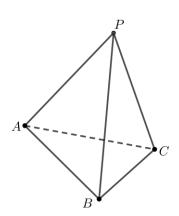
臺中市立臺中第一高級中等學校 109 學年度第 1 次教師甄選 數學科 試題卷

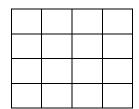
- 一、填充題甲(每一格皆為6分,共10格,總共為60分)
- 1. 已知z為複數且滿足|z|=1、|z-1.45|=1.05,求z的實部為_____。

2. 設 $P(x) = x^5 - x^2 + 1 = 0$ 的五個根為 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$, $Q(x) = x^2 + 1$, 則 $Q(\alpha_1) \cdot Q(\alpha_2) \cdot Q(\alpha_3) \cdot Q(\alpha_4) \cdot Q(\alpha_5) =$ _______。


3. 設 $x \in R$ 且滿足方程式 $\frac{8^x + 27^x}{12^x + 18^x} = \frac{7}{6}$,則x =_____。

4. 設三次實係數多項式 $f(x) = ax^3 + bx^2 + cx + d$ 滿足 2f(2) = 3f(3) = 4f(4),且 f(4) = 1010, 求 $f(1) + f(5) = _____$ 。

6. 已知一四面體 PABC 中, $\angle APB = \angle BPC = \angle CPA = 60^\circ$,且 $\triangle APB$ 、 $\triangle BPC$ 、 $\triangle CPA$ 的

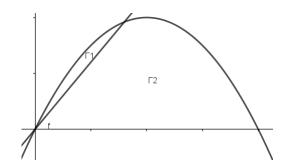

面積分別為 $\frac{\sqrt{3}}{2}$ 、2、1,則這個四面體 PABC 的體積為_____。

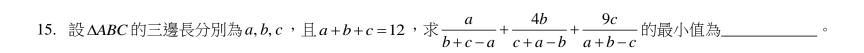
方程式為y = ax + b,則數對 $(a,b) = ____$ 。

7. 第一次段考某班全部學生的國文測驗成績平均為 54 分,標準差為 6 分;國文寫作成績平均為 16 分,標準差為 4 分,兩分數相加後所得總成績的標準差為 $2\sqrt{23}$,若國文測驗分數為 x ,國文寫作成績為 y ,且 y 對 x 的迴歸直線

8. 將兩個 a 和兩個 b 共四個字母填入如下圖所示的 16 個小方格內,每個小方格內至多填一個字母,若相同的字母必須不同行也不同列,則共有______種不同的填法。

9. 已知直線 L:6x-5y-28=0 交橢圓 $\Gamma:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (a>b>0,且a,b皆為正整數) 於兩點 $A \cdot C$,且 B(0,b) 為橢圓 Γ 的頂點。若 ΔABC 的重心 G 恰為橢圓的右焦點 $F_2(c,0)$,其中 $c=\sqrt{a^2-b^2}$,則橢圓 Γ 的正焦弦長為_____。


10. 設 O 為 $\triangle ABC$ 的外心,若 $\overrightarrow{AO} = \overrightarrow{AB} + 2\overrightarrow{AC}$,則 $\sin \angle BAC =$


二、填充題乙(每一格皆為5分,共8格,總共為40分)

11. 在空間中,有三個不共平面的非零向量 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} ,滿足 $(\overrightarrow{a} \times \overrightarrow{b}) \cdot ((\overrightarrow{b} \times \overrightarrow{c}) \times (\overrightarrow{c} \times \overrightarrow{a})) = 7$,求以三向量 $(3\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{a} - \overrightarrow{b} + 2\overrightarrow{c}) \cdot (\overrightarrow{b} + \overrightarrow{c})$ 所張成的平行六面體體積為_____。

13. 已知數列 < a_n > 滿足 $\begin{cases} a_0 = 1 \\ a_{2k+1} = a_k \\ a_{2k+2} = a_k + a_{k+1} \end{cases}$, $k \in \mathbb{N} \cup \{0\}$,求 $\sum_{k=0}^{63} a_k = \underline{\hspace{1cm}}$ 。

14. 設 Γ 是由 $y=2x-x^2$ 與 x 軸所圍成的平面圖形,直線 y=kx 將 Γ 分成兩部分(如下圖所示),若 Γ_1 與 Γ_2 的面積分別為 S_1 與 S_2 ,且 $S_1:S_2=1:7$,求 Γ_1 繞 y 軸旋轉一圈的旋轉體體積為______。

16. 已知 $\triangle ABC$ 中, $\angle BAC = 90^{\circ}$, $\overline{AB} = 1$, $\overline{AC} = \sqrt{3}$, 若 P 點在 $\triangle ABC$ 內部且滿足 $\frac{\overrightarrow{PA}}{|\overrightarrow{PA}|} + \frac{\overrightarrow{PB}}{|\overrightarrow{PB}|} + \frac{\overrightarrow{PC}}{|\overrightarrow{PC}|} = \overrightarrow{0}$,

求序對(\overline{PA} , \overline{PB} , \overline{PC})=_____。

17. 某電子玩具按下按鈕後,只會出現紅球或白球。若某次出現為紅球,則下次按下按鈕後出現紅球、白球的機率分別 為 $\frac{1}{3}$ 、 $\frac{2}{3}$;若某次出現為白球,則下次按下按鈕後出現紅球、白球的機率分別為 $\frac{3}{5}$ 、 $\frac{2}{5}$ 。已知第一次按下按鈕後出現紅球和白球的機率相等,求第n 次按下按鈕後出現紅球的機率為_____。

18. 設 $\alpha, \beta \in [0, 2\pi]$ 且 $\cos(\alpha + \beta) = \cos \alpha + \cos \beta$,求 $\cos \alpha$ 的最大值為_____。