
國立鳳山高級中學 106 學年度 第一次代理教師甄選 數學科試題

一、填充題:每題5分。 請寫下簡單的計算過程,若僅寫答案則不計分!

- $1 \cdot 在分數 \frac{1}{567}, \frac{2}{567}, \frac{3}{567}, \frac{4}{567}, \dots, \frac{567}{567}$ 中,將所有的最簡分數相加之總和為_____。
- $2 \cdot$ 在 ΔABC 中,三邊長分別為 $a \cdot b \cdot c$,已知 $a^2 c^2 = 2b$,且 $\sin A \cos C = 3 \cos A \sin C$,試求b =_______
- 3 · 如圖,已知正方形 ABCD 的邊長為 2 , \overline{BC} 平行於 x 軸,頂點 A ,B 和 C 分別在函數 $y_1 = 3\log_a x$, $y_2 = 2\log_a x$ 和 $y_2 = \log_a x$ 的圖形上,其中 a > 1,則實數 a 的值為______。

- 4 · 已知數列 $\{a_n\}$ 的前項和為 S_n ,若 $a_1=1$, $a_{2n}=n-a_n$, $a_{2n+1}=a_n+1$,則 $S_{100}=$ _____。 (請用數字作答)
- $5 \cdot 在 \Delta ABC$ 中, $\angle B = 60^{\circ}$, $\overline{AC} = \sqrt{3}$,則 $\overline{AB} + 2\overline{BC}$ 的最大值為______。
- 6 · 設 a,b 為正數且滿足 $2 + \log_2 a = 3 + \log_3 b = \log_6 (a+b)$,則 $\frac{1}{a} + \frac{1}{b} = \underline{\hspace{1cm}}$ 。
- 7·設空間中一點 A(1,-2,3) 與平面 E: ax + by + cz = 0 (其中 a,b,c 不同時為 0)的距離為 d ,則 d 的最大值為_____。
- 8 · 已知 $f(x) = a \sin x b \tan \frac{x}{2} + 3$, $a, b \in R$ 且 $ab \neq 0$,若 f(7) = 10 ,則 $f(106\pi 7)$ 的值為______。
- 9·設 $x = 0.1234567891011 \cdots 998999$,這個小數是從小數點後以 1 開始一直寫到 999 而得,試問 x 的小數點後第 2017 位的數字是
- 10·如圖,在 ΔABC 中, $\angle B=90^\circ$, $\overline{BC}=1$,P 為 ΔABC 內一點,使得 ΔPBC 為直角三角形,若 $\angle APB=150^\circ$, $\angle PBA=\theta$,求 $\tan\theta=$ _____。

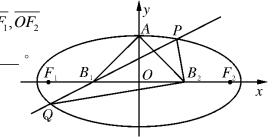
11 · 多項式 $f(x) = (x^3 - x + 1)^{20}$ 除以 $(x+1)^2$ 的餘式為_____。

12	如圖所示的"數陣"的特點是	: 每行每列都成等差數列,	則數字 73 存	E數陣圖中出現的次數共	次。

13	・已知直線 $ax + by + 1 = 0$ 與圓 x^2	$+y^2=50$ 有交點,	且交點為格子點(即點之橫 $x \cdot y$ 坐標均為整數),	
	則符合條件的直線共有	條。		

2	3	4	5	6	7	•••
3	5	7	9	11	13	
4	7	10	13	16	19	
5	9	13	17	21	25	
6	11	16	21	26	31	
7	13	19	25	31	37	•••
•••		•••				

14.數字 1,2,3,...,10 中,依由小到大的順序取出 a_1,a_2,a_3 且 $a_2-a_1 \ge 2,a_3-a_2 \ge 2$,則不同的取法有______種。


15 · 已知 $f(x) = x^3 - 3x$,過點 A(1,m) , $m \neq -2$,可作曲線 y = f(x)的三條切線,則實數 m 的範圍為_____。

16·袋中裝有 12 張大小相同的卡片,每張卡片正面分別標有 1 到 12 中的一個數字,正面數字為n的卡片反面標的數字為 $n^2-9n+22$,卡片的正反面用顏色區分,則同時取出兩張卡片,試求兩張卡片反面的數字相同的機率為_____。

 $17 \cdot 若 a,b,c$ 為方程式 $f(x) = \begin{vmatrix} x+1 & 1 & 1 \\ 2015 & x+2016 & 2017 \\ 2015^2 & 2016^2 & x+2017^2 \end{vmatrix} = 0$ 的三個根,則 abc 之值為_____。

18·設a,b都是正整數,且 $a+b\sqrt{2}=\left(1+\sqrt{2}\right)^{100}$,則ab的個位數字為____。

19·如圖,設橢圓的中心為原點 O,長軸在 x 軸上,短軸一頂點為 A,左、右焦點分別為 F_1, F_2 ,線段 $\overline{OF_1}, \overline{OF_2}$ 的中點分別為 B_1, B_2 ,且 ΔAB_1B_2 是面積為 4 的直角三角形,求該橢圓的方程式為_____。

 $20 \cdot$ 已知雙曲線 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (a > 0, b > 0)$ 右支上一點 P,滿足 $\overline{PF_1} = 3$,貫軸長為 1, F_1 , F_2 分別是雙曲線的左右焦點,M 為 y 軸上一點,則 $\overrightarrow{PM} \cdot \left(\overrightarrow{PF_1} - \overrightarrow{PF_2}\right) = ______$ 。