Problems of Vasc and Arqady

Amir Hossein Parvardi*

January 6, 2011

1. Suppose that a, b, c are positive real numbers, prove that

$$
1<\frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{b}{\sqrt{b^{2}+c^{2}}}+\frac{c}{\sqrt{c^{2}+a^{2}}} \leq \frac{3 \sqrt{2}}{2}
$$

2. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$
\begin{gathered}
2\left(\frac{a^{3}}{b+c}+\frac{b^{3}}{c+a}+\frac{c^{3}}{a+b}\right)+(a+b+c)^{2} \geq 4\left(a^{2}+b^{2}+c^{2}\right) \\
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \leq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{2(a+b+c)} .
\end{gathered}
$$

3. For all reals a, b and c prove that:

$$
\sum_{c y c}(a-b)(a-c) \sum_{c y c} a^{2}(a-b)(a-c) \geq\left(\sum_{c y c} a(a-b)(a-c)\right)^{2}
$$

4. Let a, b and c are non-negatives such that $a+b+c+a b+a c+b c=6$. Prove that:

$$
4(a+b+c)+a b c \geq 13
$$

5. Let a, b and c are non-negatives. Prove that:

$$
\left(a^{2}+b^{2}-2 c^{2}\right) \sqrt{c^{2}+a b}+\left(a^{2}+c^{2}-2 b^{2}\right) \sqrt{b^{2}+a c}+\left(b^{2}+c^{2}-2 a^{2}\right) \sqrt{a^{2}+b c} \leq 0
$$

6. If a, b, c are nonnegative real numbers, then

$$
\begin{gathered}
\sum_{c y c} a \sqrt{3 a^{2}+5(a b+b c+c a)} \geq \sqrt{2}(a+b+c)^{2} ; \\
\sum_{c y c} a \sqrt{2 a(a+b+c)+3 b c} \geq(a+b+c)^{2} ; \\
\sum_{c y c} a \sqrt{5 a^{2}+9 b c+11 a(b+c)} \geq 2(a+b+c)^{2} .
\end{gathered}
$$

[^0]7. If a, b, c are nonnegative real numbers, then
\[

$$
\begin{gathered}
\sum_{c y c} a \sqrt{2\left(a^{2}+b^{2}+c^{2}\right)+3 b c} \geq(a+b+c)^{2} \\
\sum_{c y c} a \sqrt{4 a^{2}+5 b c} \geq(a+b+c)^{2}
\end{gathered}
$$
\]

8. If a, b, c are nonnegative real numbers, then

$$
\begin{aligned}
& \sum_{c y c} a \sqrt{a b+2 b c+c a} \geq 2(a b+b c+c a) \\
& \sum_{c y c} a \sqrt{a^{2}+4 b^{2}+4 c^{2}} \geq(a+b+c)^{2}
\end{aligned}
$$

9. If a, b, c are nonnegative real numbers, then

$$
\sum \sqrt{a(b+c)\left(a^{2}+b c\right)} \geq 2(a b+b c+c a)
$$

10. If a, b, c are positive real numbers such that $a b+b c+c a=3$, then

$$
\begin{gathered}
\sum_{c y c} \sqrt{a(a+b)(a+c)} \geq 6 \\
\sum_{c y c} \sqrt{a(4 a+5 b)(4 a+5 c)} \geq 27 .
\end{gathered}
$$

11. If a, b, c are nonnegative real numbers, then

$$
\begin{gathered}
\sum_{c y c} a \sqrt{(a+b)(a+c)} \geq 2(a b+b c+c a) \\
\sum_{c y c} a \sqrt{(a+2 b)(a+2 c)} \geq 3(a b+b c+c a) \\
\sum_{c y c} a \sqrt{(a+3 b)(a+3 c)} \geq 4(a b+b c+c a)
\end{gathered}
$$

12. If a, b, c are nonnegative real numbers, then

$$
\begin{gathered}
\sum_{c y c} a \sqrt{(2 a+b)(2 a+c)} \geq(a+b+c)^{2} \\
\sum_{c y c} a \sqrt{(a+b)(a+c)} \geq \frac{2}{3}(a+b+c)^{2} \\
\sum_{c y c} a \sqrt{(4 a+5 b)(4 a+5 c)} \geq 3(a+b+c)^{2} .
\end{gathered}
$$

13. If a, b, c are positive real numbers, then

$$
\begin{gathered}
a^{3}+b^{3}+c^{3}+a b c+8 \geq 4(a+b+c) \\
a^{3}+b^{3}+c^{3}+3 a b c+12 \geq 6(a+b+c) \\
4\left(a^{3}+b^{3}+c^{3}\right)+15 a b c+54 \geq 27(a+b+c)
\end{gathered}
$$

14. If a, b, c are positive real numbers, then

$$
\begin{aligned}
& \frac{a}{\sqrt{4 a^{2}+3 a b+2 b^{2}}}+\frac{b}{\sqrt{4 b^{2}+3 b c+2 c^{2}}}+\frac{c}{\sqrt{4 c^{2}+3 c a+2 a^{2}}} \leq 1 \\
& \frac{a}{\sqrt{4 a^{2}+2 a b+3 b^{2}}}+\frac{b}{\sqrt{4 b^{2}+2 b c+3 c^{2}}}+\frac{c}{\sqrt{4 c^{2}+2 c a+3 a^{2}}} \leq 1 \\
& \frac{a}{\sqrt{4 a^{2}+a b+4 b^{2}}}+\frac{b}{\sqrt{4 b^{2}+b c+4 c^{2}}}+\frac{c}{\sqrt{4 c^{2}+c a+4 a^{2}}} \leq 1
\end{aligned}
$$

The last is a known inequality.
15. If a, b, c are positive real numbers, then

$$
1+\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 2 \sqrt{1+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}}
$$

16. Let x, y, z be real numbers such that $x+y+z=0$. Find the maximum value of

$$
E=\frac{y z}{x^{2}}+\frac{z x}{y^{2}}+\frac{x y}{z^{2}} .
$$

17. If $a . b . c$ are distinct real numbers, then

$$
\frac{a b}{(a-b)^{2}}+\frac{b c}{(b-c)^{2}}+\frac{c a}{(c-a)^{2}}+\frac{1}{4} \geq 0
$$

18. If a and b are nonnegative real numbers such that $a+b=2$, then

$$
\begin{aligned}
& a^{a} b^{b}+a b \geq 2 \\
& a^{a} b^{b}+3 a b \leq 4 \\
& a^{b} b^{a}+2 \geq 3 a b
\end{aligned}
$$

19. Let a, b, c, d and k be positive real numbers such that

$$
(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=k
$$

Find the range of k such that any three of a, b, c, d are triangle side-lengths.
20. If a, b, c, d, e are positive real numbers such that $a+b+c+d+e=5$, then

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}}+\frac{1}{e^{2}}+9 \geq \frac{14}{5}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)
$$

21. Let a, b and c are non-negatives such that $a b+a c+b c=3$. Prove that:

$$
\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{1}{2} a b c \leq 2 .
$$

22. Let a, b, c and d are positive numbers such that $a^{4}+b^{4}+c^{4}+d^{4}=4$.

Prove that:

$$
\frac{a^{3}}{b c}+\frac{b^{3}}{c d}+\frac{c^{3}}{d a}+\frac{d^{3}}{a b} \geq 4
$$

23. Let $a \geq b \geq c \geq 0$ Prove that:

$$
\begin{aligned}
& (a-b)^{5}+(b-c)^{5}+(c-a)^{5} \leq 0 \\
& \sum_{c y c}\left(5 a^{2}+11 a b+5 b^{2}\right)(a-b)^{5} \leq 0
\end{aligned}
$$

24. Let a, b and c are positive numbers. Prove that:

$$
\frac{a}{a^{2}+b c}+\frac{b}{b^{2}+a c}+\frac{c}{c^{2}+a b} \leq \frac{3}{2 \sqrt[3]{a b c}}
$$

25. Let a, b and c are positive numbers. Prove that:

$$
\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}} \geq \sqrt{\frac{11(a+b+c)}{\sqrt[3]{a b c}}-15} .
$$

26. Let a, b and c are non-negative numbers. Prove that:
$9 a^{2} b^{2} c^{2}+a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}-4(a b+a c+b c)+2(a+b+c) \geq 0$.
27. Let a, b, c, d be nonnegative real numbers such that $a \geq b \geq c \geq d$ and

$$
3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=(a+b+c+d)^{2}
$$

Prove that

$$
\begin{gathered}
a \leq 3 b ; \\
a \leq 4 c \\
b \leq(2+\sqrt{3}) c
\end{gathered}
$$

28. If a, b, c are nonnegative real numbers, no two of which are zero, then

$$
\begin{gathered}
\frac{b c}{2 a^{2}+b c}+\frac{c a}{2 b^{2}+c a}+\frac{a b}{2 c^{2}+a b} \leq \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \\
\frac{2 b c}{a^{2}+2 b c}+\frac{2 c a}{b^{2}+2 c a}+\frac{2 a b}{c^{2}+2 a b}+\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \geq 3 .
\end{gathered}
$$

29. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers sucht that

$$
a_{1}, a_{2}, \ldots, a_{n} \geq n-1-\sqrt{1+(n-1)^{2}}, \quad a_{1}+a_{2}+\ldots+a_{n}=n .
$$

Prove that

$$
\frac{1}{a_{1}^{2}+1}+\frac{1}{a_{2}^{2}+1}+\ldots+\frac{1}{a_{n}^{2}+1} \geq \frac{n}{2}
$$

30. Let a, b, c be nonnegative real numbers such that $a+b+c=3$. For given real $p \neq-2$, find q such that the inequality holds

$$
\frac{1}{a^{2}+p a+q}+\frac{1}{b^{2}+p b+q}+\frac{1}{c^{2}+p c+q} \leq \frac{3}{1+p+q}
$$

with two equality cases.
Some particular cases:

$$
\frac{1}{a^{2}+2 a+15}+\frac{1}{b^{2}+2 b+15}+\frac{1}{c^{2}+2 c+15} \leq \frac{1}{6}
$$

with equality for $a=0$ and $b=c=\frac{3}{2}$;

$$
\frac{1}{8 a^{2}+8 a+65}+\frac{1}{8 b^{2}+8 b+65}+\frac{1}{8 c^{2}+8 c+65} \leq \frac{1}{27}
$$

with equality for $a=\frac{5}{2}$ and $b=c=\frac{1}{4}$;

$$
\frac{1}{8 a^{2}-8 a+9}+\frac{1}{8 b^{2}-8 b+9}+\frac{1}{8 c^{2}-8 c+9} \leq \frac{1}{3}
$$

with equality for $a=\frac{3}{2}$ and $b=c=\frac{3}{4}$;

$$
\frac{1}{8 a^{2}-24 a+25}+\frac{1}{8 b^{2}-24 b+25}+\frac{1}{8 c^{2}-24 c+25} \leq \frac{1}{3}
$$

with equality for $a=\frac{1}{2}$ and $b=c=\frac{5}{4}$;

$$
\frac{1}{2 a^{2}-8 a+15}+\frac{1}{2 b^{2}-8 b+15}+\frac{1}{2 c^{2}-8 c+15} \leq \frac{1}{3}
$$

with equality for $a=3$ and $b=c=0$.
31. If a, b, c are the side-lengths of a triangle, then

$$
a^{3}(b+c)+b c\left(b^{2}+c^{2}\right) \geq a\left(b^{3}+c^{3}\right) .
$$

32. Find the minimum value of $k>0$ such that

$$
\frac{a}{a^{2}+k b c}+\frac{b}{b^{2}+k c a}+\frac{c}{c^{2}+k a b} \geq \frac{9}{(1+k)(a+b+c)},
$$

for any positive a, b, c. See the nice case $k=8$.
Note. Actually, this inequality (with a, b, c replaced by $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$) is known.
33. If a, b, c, d are nonnegative real numbers such that

$$
a+b+c+d=4, \quad a^{2}+b^{2}+c^{2}+d^{2}=7
$$

then

$$
a^{3}+b^{3}+c^{3}+d^{3} \leq 16
$$

34. If $a \geq b \geq c \geq 0$, then

$$
\begin{aligned}
& a+b+c-3 \sqrt[3]{a b c} \geq \frac{64(a-b)^{2}}{7(11 a+24 b)} \\
& a+b+c-3 \sqrt[3]{a b c} \geq \frac{25(b-c)^{2}}{7(3 b+11 c)}
\end{aligned}
$$

35. If $a \geq b \geq 0$, then

$$
a^{b-a} \leq 1+\frac{a-b}{\sqrt{a}}
$$

36. If $a, b \in(0,1]$, then

$$
a^{b-a}+b^{a-b} \leq 2
$$

37. If a, b, c are positive real numbers such that $a+b+c=3$, then

$$
\frac{24}{a^{2} b+b^{2} c+c^{2} a}+\frac{1}{a b c} \geq 9
$$

38. Let x, y, z be positive real numbers belonging to the interval $[a, b]$. Find the best M (which does not depend on x, y, z) such that

$$
x+y+z \leq 3 M \sqrt[3]{x y z}
$$

39. Let a and b be nonnegative real numbers. Prove that

$$
\begin{aligned}
& 2 a^{2}+b^{2}=2 a+b \Rightarrow 1-a b \geq \frac{a-b}{3} \\
& a^{3}+b^{3}=2 \Rightarrow 3\left(a^{4}+b^{4}\right)+2 a^{4} b^{4} \leq 8
\end{aligned}
$$

40. Let a, b and c are non-negative numbers. Prove that:

$$
\frac{a+b+c+\sqrt{a b}+\sqrt{a c}+\sqrt{b c}+\sqrt[3]{a b c}}{7} \geq \sqrt[7]{\frac{(a+b+c)(a+b)(a+c)(b+c) a b c}{24}}
$$

41. Let a, b, c and d are non-negative numbers such that

$$
a b c+a b d+a c d+b c d=4
$$

Prove that:

$$
\frac{1}{a+b+c}+\frac{1}{a+b+d}+\frac{1}{a+c+d}+\frac{1}{b+c+d}-\frac{3}{a+b+c+d} \leq \frac{7}{12}
$$

42. Let a, b, c and d are positive numbers such that

$$
a b+a c+a d+b c+b d+c d=6
$$

Prove that:

$$
\frac{1}{a+b+c+1}+\frac{1}{a+b+d+1}+\frac{1}{a+c+d+1}+\frac{1}{b+c+d+1} \leq 1
$$

43. Let $x \geq 0$. Prove without calculus:

$$
\left(e^{x}-1\right) \ln (1+x) \geq x^{2}
$$

44. Let a, b and c are positive numbers. Prove that:

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{24 \sqrt[3]{a b c}}{a+b+c} \geq 11
$$

45. For all $[\mathrm{b}]$ reals $[/ \mathrm{b}] a, b$ and c such that $\sum_{c y c}\left(a^{2}+5 a b\right) \geq 0$ prove that:

$$
(a+b+c)^{6} \geq 36(a+b)(a+c)(b+c) a b c
$$

The equality holds also when a, b and c are roots of the equation:

$$
2 x^{3}-6 x^{2}-6 x+9=0
$$

46. Let a, b and c are non-negative numbers such that $a b+a c+b c \neq 0$.

Prove that:

$$
\frac{(a+b)^{2}}{a^{2}+3 a b+4 b^{2}}+\frac{(b+c)^{2}}{b^{2}+3 b c+4 c^{2}}+\frac{(c+a)^{2}}{c^{2}+3 c a+4 a^{2}} \geq \frac{3}{2}
$$

47. a, b and c are $[\mathrm{b}] \mathrm{real}[/ \mathrm{b}]$ numbers such that $a+b+c=3$. Prove that:

$$
\frac{1}{(a+b)^{2}+14}+\frac{1}{(b+c)^{2}+14}+\frac{1}{(c+a)^{2}+14} \leq \frac{1}{6}
$$

48. Let a, b and c are $[\mathrm{b}]$ real $[/ \mathrm{b}]$ numbers such that $a+b+c=1$.

Prove that:

$$
\frac{a}{a^{2}+1}+\frac{b}{b^{2}+1}+\frac{c}{c^{2}+1} \leq \frac{9}{10} .
$$

49. Let a, b and c are positive numbers such that $4 a b c=a+b+c+1$.

Prove that:

$$
\frac{b^{2}+c^{2}}{a}+\frac{c^{2}+a^{2}}{b}+\frac{b^{2}+a^{2}}{c} \geq 2\left(a^{2}+b^{2}+c^{2}\right)
$$

50. Let a, b and c are positive numbers. Prove that:

$$
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right) \geq 1+2 \sqrt[3]{6\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)+10}
$$

51. Let a, b and c are positive numbers. Prove that:

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a} \geq \frac{37\left(a^{2}+b^{2}+c^{2}\right)-19(a b+a c+b c)}{6(a+b+c)} .
$$

52. Let a, b and c are positive numbers such that $a b c=1$. Prove that

$$
a^{3}+b^{3}+c^{3}+4\left(\frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}\right)+48 \geq 7(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

53. Let a, b and c are non-negative numbers such that $a b+a c+b c=3$.

Prove that:

$$
\begin{gathered}
\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}+\frac{1}{1+c^{2}} \geq \frac{3}{2} \\
\frac{1}{2+3 a^{3}}+\frac{1}{2+3 b^{3}}+\frac{1}{2+3 c^{3}} \geq \frac{3}{5} \\
\frac{1}{3+5 a^{4}}+\frac{1}{3+5 b^{4}}+\frac{1}{3+5 c^{4}} \geq \frac{3}{8}
\end{gathered}
$$

54. Let a, b and c are non-negative numbers such that $a b+a c+b c \neq 0$. Prove that

$$
\frac{a+b+c}{a b+a c+b c} \leq \frac{a}{b^{2}+b c+c^{2}}+\frac{b}{a^{2}+a c+c^{2}}+\frac{c}{a^{2}+a b+b^{2}} \leq \frac{a^{3}+b^{3}+c^{3}}{a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}}
$$

55. Let a, b and c are non-negative numbers such that $a b+a c+b c=3$.

Prove that

$$
\begin{aligned}
& \frac{a+b+c}{3} \geq \sqrt[5]{\frac{a^{2} b+b^{2} c+c^{2} a}{3}} \\
& \frac{a+b+c}{3} \geq \sqrt[11]{\frac{a^{3} b+b^{3} c+c^{3} a}{3}}
\end{aligned}
$$

56. Let a, b and c are non-negative numbers. Prove that

$$
\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 4(a-b)(b-c)(c-a)(a+b+c) .
$$

57. Let a, b and c are non-negative numbers. Prove that:

$$
(a+b+c)^{8} \geq 128\left(a^{5} b^{3}+a^{5} c^{3}+b^{5} a^{3}+b^{5} c^{3}+c^{5} a^{3}+c^{5} b^{3}\right)
$$

58. Let a, b and c are positive numbers. Prove that

$$
\frac{a^{2}-b c}{3 a+b+c}+\frac{b^{2}-a c}{3 b+a+c}+\frac{c^{2}-a b}{3 c+a+b} \geq 0
$$

It seems that the inequality

$$
\sum_{c y c} \frac{a^{3}-b c d}{7 a+b+c+d} \geq 0
$$

is also true for positive a, b, c and d.
59. Let a, b and c are non-negative numbers such that $a b+a c+b c=3$. Prove that:

$$
\begin{aligned}
a^{2}+b^{2}+c^{2}+3 a b c & \geq 6 \\
a^{4}+b^{4}+c^{4}+15 a b c & \geq 18
\end{aligned}
$$

60. Let a, b and c are positive numbers such that $a b c=1$. Prove that

$$
a^{2} b+b^{2} c+c^{2} a \geq \sqrt{3\left(a^{2}+b^{2}+c^{2}\right)}
$$

61. Let a, b and c are non-negative numbers such that $a b+a c+b c \neq 0$.

Prove that:

$$
\frac{1}{a^{3}+3 a b c+b^{3}}+\frac{1}{a^{3}+3 a b c+c^{3}}+\frac{1}{b^{3}+3 a b c+c^{3}} \geq \frac{81}{5(a+b+c)^{3}}
$$

62. Let m_{a}, m_{b} and m_{c} are medians of triangle with sides lengths a, b, c. Prove that

$$
m_{a}+m_{b}+m_{c} \geq \frac{3}{2} \sqrt{2(a b+a c+b c)-a^{2}-b^{2}-c^{2}}
$$

63. Let a, b and c are positive numbers. Prove that:

$$
\frac{a+b+c}{9 \sqrt[3]{a b c}} \geq \frac{a^{2}}{4 a^{2}+5 b c}+\frac{b^{2}}{4 b^{2}+5 c a}+\frac{c^{2}}{4 c^{2}+5 a b}
$$

64. Let $\{a, b, c, d\} \subset[1,2]$. Prove that

$$
16\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+d^{2}\right)\left(d^{2}+a^{2}\right) \leq 25(a c+b d)^{4}
$$

65. Let a, b and c are positive numbers. Prove that

$$
\sum_{c y c} \sqrt{a^{2}-a b+b^{2}} \leq \frac{10\left(a^{2}+b^{2}+c^{2}\right)-a b-a c-b c}{3(a+b+c)}
$$

66. Let a, b and c are non-negative numbers. Prove that:

$$
\sum_{c y c} \sqrt{2\left(a^{2}+b^{2}\right)} \geq \sqrt[3]{9 \sum_{c y c}(a+b)^{3}} .
$$

67. Let a, b and c are positive numbers. Prove that:

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \sqrt{\frac{15\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}-6}
$$

68. Let a, b, c, d and e are non-negative numbers. Prove that

$$
\left(\frac{(a+b)(b+c)(c+d)(d+e)(e+a)}{32}\right)^{128} \geq\left(\frac{a+b+c+d+e}{5}\right)^{125}(a b c d e)^{103} .
$$

69. Let a, b and c are positive numbers. Prove that

$$
a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b \geq 6\left(\frac{a^{2}+b^{2}+c^{2}}{a b+a c+b c}\right)^{\frac{4}{5}} a b c .
$$

70. Let a, b and c are non-negative numbers such that $a^{3}+b^{3}+c^{3}=3$.

Prove that

$$
\left(a+b^{2} c^{2}\right)\left(b+a^{2} c^{2}\right)\left(c+a^{2} b^{2}\right) \geq 8 a^{2} b^{2} c^{2} .
$$

71. Given real different numbers a, b and c. Prove that:

$$
\frac{\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)^{3}}{(a-b)(b-c)(c-a)}\left(\frac{1}{(a-b)^{3}}+\frac{1}{(b-c)^{3}}+\frac{1}{(c-a)^{3}}\right) \leq-\frac{405}{16}
$$

When the equality occurs?
72. Let $x \neq 1, y \neq 1$ and $x \neq 1$ such that $x y z=1$. Prove that:

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1 .
$$

When the equality occurs?
73. Let a, b, and c are non-negative numbers such that $a+b+c=3$.

Prove that:

$$
a^{5}+b^{5}+c^{5}+6 \geq 3\left(a^{3}+b^{3}+c^{3}\right)
$$

74. $a>1, b>1$ and $c>1$. Find the minimal value of the expression:

$$
\frac{a^{3}}{a+b-2}+\frac{b^{3}}{b+c-2}+\frac{c^{3}}{c+a-2} .
$$

75. For all non-negative a, b and c prove that:

$$
\left(a b-c^{2}\right)(a+b-c)^{3}+\left(a c-b^{2}\right)(a+c-b)^{3}+\left(b c-a^{2}\right)(b+c-a)^{3} \geq 0
$$

76. Let a, b, c and d are positive numbers such that $a^{4}+b^{4}+c^{4}+d^{4}=4$. Prove that

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{d}+\frac{d^{2}}{a} \geq 4
$$

Remark. This inequality is not true for the condition $a^{5}+b^{5}+c^{5}+d^{5}=4$.
77. Let a, b and c are positive numbers such that $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=3$. Prove that

$$
\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c} \leq \frac{3}{2}
$$

78. Let a, b and c are positive numbers such that $a b c=1$. Prove that:

$$
(a+b+c)^{3} \geq 63\left(\frac{1}{5 a^{3}+2}+\frac{1}{5 b^{3}+3}+\frac{1}{5 c^{3}+2}\right)
$$

79. Let a, b and c are positive numbers such that

$$
\max \{a b, b c, c a\} \leq \frac{a b+a c+b c}{2}, \quad a+b+c=3
$$

Prove that

$$
a^{2}+b^{2}+c^{2} \geq a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}
$$

80. Let a, b and c are positive numbers such that $a+b+c=3$. Prove that:

$$
\frac{a^{2}}{3 a+b^{2}}+\frac{b^{2}}{3 b+c^{2}}+\frac{c^{2}}{3 c+a^{2}} \geq \frac{3}{4} .
$$

81. Let a, b and c are non-negative numbers and $k \geq 2$. Prove that

$$
\begin{gathered}
\sqrt{2 a^{2}+5 a b+2 b^{2}}+\sqrt{2 a^{2}+5 a c+2 c^{2}}+\sqrt{2 b^{2}+5 b c+2 c^{2}} \leq 3(a+b+c) \\
\sum_{c y c} \sqrt{a^{2}+k a b+b^{2}} \leq \sqrt{4\left(a^{2}+b^{2}+c^{2}\right)+(3 k+2)(a b+a c+b c)}
\end{gathered}
$$

82. Let x, y and z are non-negative numbers such that $x^{2}+y^{2}+z^{2}=3$. Prove that:

$$
\frac{x}{\sqrt{x^{2}+y+z}}+\frac{y}{\sqrt{x+y^{2}+z}}+\frac{z}{\sqrt{x+y+z^{2}}} \leq \sqrt{3}
$$

83. Let a, b and c are non-negative numbers such that $a+b+c=3$.

Prove that

$$
\frac{a+b}{a b+9}+\frac{a+c}{a c+9}+\frac{b+c}{b c+9} \geq \frac{3}{5}
$$

84. If x, y, z be positive reals, then

$$
\frac{x}{\sqrt{x+y}}+\frac{y}{\sqrt{y+z}}+\frac{z}{\sqrt{z+x}} \geq \sqrt[4]{\frac{27(y z+z x+x y)}{4}}
$$

85. For positive numbers a, b, c, d, e, f and g prove that:

$$
\frac{a+b+c+d}{a+b+c+d+f+g}+\frac{c+d+e+f}{c+d+e+f+b+g}>\frac{e+f+a+b}{e+f+a+b+d+g} .
$$

86. Let a, b and c are non-negative numbers. Prove that:

$$
a \sqrt{4 a^{2}+5 b^{2}}+b \sqrt{4 b^{2}+5 c^{2}}+c \sqrt{4 c^{2}+5 a^{2}} \geq(a+b+c)^{2} .
$$

87. Let a, b and c are positive numbers. Prove that:

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{(4 \sqrt{2}-3)(a b+a c+b c)}{a^{2}+b^{2}+c^{2}} \geq 4 \sqrt{2}
$$

88. Let a, b and c are non-negative numbers such, that $a^{4}+b^{4}+c^{4}=3$.

Prove that:

$$
a^{5} b+b^{5} c+c^{5} a \leq 3 .
$$

89. Let a and b are positive numbers, $n \in \mathbb{N}$. Prove that:

$$
(n+1)\left(a^{n+1}+b^{n+1}\right) \geq(a+b)\left(a^{n}+a^{n-1} b+\cdots+b^{n}\right)
$$

90. Find the maximal α, for which the following inequality

$$
a^{3} b+b^{3} c+c^{3} a+\alpha a b c \leq 27
$$

holds for all non-negative a, b and c such that $a+b+c=4$.
91. Let a, b and c are non-negative numbers. Prove that

$$
3 \sqrt[9]{\frac{a^{9}+b^{9}+c^{9}}{3}} \geq \sqrt[10]{\frac{a^{10}+b^{10}}{2}}+\sqrt[10]{\frac{a^{10}+c^{10}}{2}}+\sqrt[10]{\frac{b^{10}+c^{10}}{2}}
$$

92. Let a and b are positive numbers and $2-\sqrt{3} \leq k \leq 2+\sqrt{3}$. Prove that

$$
(\sqrt{a}+\sqrt{b})\left(\frac{1}{\sqrt{a+k b}}+\frac{1}{\sqrt{b+k a}}\right) \leq \frac{4}{\sqrt{1+k}} .
$$

93. Let a, b and c are nonnegative numbers, no two of which are zeros. Prove that:

$$
\frac{a}{b^{2}+c^{2}}+\frac{b}{a^{2}+c^{2}}+\frac{c}{a^{2}+b^{2}} \geq \frac{3(a+b+c)}{a^{2}+b^{2}+c^{2}+a b+a c+b c} .
$$

94. Let x, y and z are positive numbers such that $x y+x z+y z=1$.

Prove that

$$
\frac{x^{3}}{1-4 y^{2} x z}+\frac{y^{3}}{1-4 z^{2} y x}+\frac{z^{3}}{1-4 x^{2} y z} \geq \frac{(x+y+z)^{3}}{5} .
$$

95. Let a, b and c are positive numbers such that $a^{6}+b^{6}+c^{6}=3$.

Prove that:

$$
(a b+a c+b c)\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right) \geq 9
$$

96. Let a, b and c are positive numbers. Prove that

$$
\sqrt[3]{\frac{a}{2 b+25 c}}+\sqrt[3]{\frac{b}{2 c+25 a}}+\sqrt[3]{\frac{c}{2 a+25 b}} \geq 1
$$

97. Let a, b and c are sides lengths of triangle. Prove that

$$
\frac{(a+b)(a+c)(b+c)}{8} \geq \frac{(2 a+b)(2 b+c)(2 c+a)}{27}
$$

98. Let a, b and c are non-negative numbers. Prove that

$$
\sqrt[3]{\frac{(2 a+b)(2 b+c)(2 c+a)}{27}} \geq \sqrt{\frac{a b+a c+b c}{3}}
$$

99. Let a, b and c are positive numbers. Prove that

$$
\sqrt{\frac{a^{3}}{b^{3}+(c+a)^{3}}}+\sqrt{\frac{b^{3}}{c^{3}+(a+b)^{3}}}+\sqrt{\frac{c^{3}}{a^{3}+(b+c)^{3}}} \geq 1
$$

100. Let x, y and z are non-negative numbers such that $x y+x z+y z=9$. Prove that

$$
\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right) \geq 64
$$

END.

[^0]: *Email: ahpwsog@gmail.com , blog: http://www.math-olympiad.blogsky.com/

