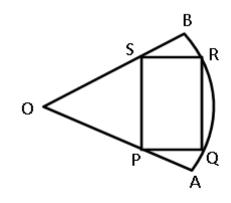
高雄市 104 學年度市立高級中等學校聯合教師甄選 數學科試題卷

【※答案一律寫在答案本上】

- 一、計算證明題:一律詳列過程;1~5題每題6分,6~15每題7分。
- 1. 求所有滿足 $(m+n)^m = n^m + 1413$ 的所有正整數 m, n。
- 2. 證明 $x^8 x^5 + x^2 + x + 1 = 0$ 沒有實根。
- 4. 設x,y為實數,且x,y滿足條件 $(x-2)^2 + (y-2)^2 = 3$,則 $\frac{y}{x}$ 之最小值 為_____。
- 為_____。 $x \in R$,若 $f(x) = x^3 + ax^2 + bx + 5$ 在 x = 1 有極小值為 2,求 f(x) 的極大值為_____。
- 6. 四邊形 ABCD,對角線 \overline{AC} 與 \overline{BD} 交於 P 點,若 ΔABP 的三邊長為 $5 \cdot 6 \cdot 7$,且 $\overline{AC} = 2\overline{AB} + 3\overline{AD}$,求四邊形 ABCD 的面積為_____。



- 8. 隨意將編號 1 至 7 的七張卡片排成一列,恰有三張卡片所排的順序與它的編 號相同的機率為_____。
- 9. 試求 $\lim_{n\to\infty} \frac{1}{4n^2} \left[\sqrt{4n^2 1^2} + \sqrt{4n^2 2^2} + \dots + \sqrt{4n^2 n^2} \right] = \underline{\hspace{1cm}}$ \circ
- 10. 在擲一個公正骰子的遊戲中規定:若遊戲者在一次投擲中擲出的點數並非 6點,則此遊戲者只能拿到 m 元並停止遊戲;若遊戲者擲出 6點,則可獲得獎金 10 元並有再次擲骰子的機會。已知一遊戲者要玩這個遊戲直到他擲出非 6點才停止遊戲的得獎金期望值為 5 元,則 m=____。
- 12. 將與 2015 互質的正整數由小到大排列,則第 2015 個數為何?
- 13. 給定空間中四點 $A(a_1,a_2,a_3)$,B(2,-3,6),C(11,1,5), $D(6,d_2,d_3)$,若 A,B,C,D 四點形成一正四面體,且 a_1,a_2,a_3,d_2,d_3 皆為整數,試求 A 點坐標。
- 15. 令 $N = \sum_{k=1}^{2015} k \left[\log_2 k \right]$, 其中 $\left[\log_2 k \right]$ 表不大於 $\log_2 k$ 的最大整數,試問 N 除以 1000 的餘數為何?