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12.

13.

14.

15,

*16.
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. Let a, b,c be positive integers. Prove that there is no solution of

ax + by = ¢ in positive integers if a + b > .

. If ax + by = ¢ is solvable, prove that it has a solution x,, y, with
0 <x, < |b.

., Prove that ax + by = a + ¢ is solvable if and only if ax + by = ¢ is
solvable.
Prove that ax + by = ¢ is solvable if and only if (a, b) = (a, b, ¢).

Given that ax + by = ¢ has two solutions, (x,, ¥o) and (x,, ¥,} with
x, = 1 + x,, and given that (a, b} = 1, prove that b = +1.

A positive integer is called powerful if p*|a whenever pla. Show that
a is powerful if and only if a can be expressed in the form a = b%c3
where b and ¢ are positive integers.

Let a, b, ¢ be positive integers such that glc, where g = g.c.d.(a, b),
and let N denote the number of solutions of (5.1) in non-negative
integers. Show that N ={y,g/al + {x,g/b1+ 1 =gc/(ab) + 1 —
{y,g/a) — {x,8/b}

Let a, b, ¢ be positive integers. Assuming that glc and that cg/(ab)
is an integer, prove that N =1 + cg/(ab), and that P= -1+
cg/(ab).

Let a, b, ¢ be positive integers. Assuming that glc but that cg/(ab) is
not an integer, prove that P = {cg/(ab)] or P ={cg/(ab)] + 1, and
that N = {cg/(ab)] or N =[cg/(ab)] + 1. Assuming further that
alc, show that N = [eg/(ab)] + 1 and that P = [cg/(ab)]. (H)

Let a and b be positive integers with g.c.d.(a, b} = 1. Let .~ denote
the sct of all integers that may be expressed in the form ax + by
where x and y are non-negative integers, Show that ¢ =ab —a — b
is not a member of ./, but that every integer larger than c is a
member of ..

Find necessary and sufficient conditions that
x+by+cz=d, x+byy+cyz=d,

have at least one simultaneous solution in integers x, v, z, assuming
that the coefficients are integers with b, # b,.

SIMULTANEOUS LINEAR EQUATIONS

Let a,, a,,' ', a, be integers, not all 0, and suppose we wish to find all
solutions in integers of the equation

ax; +ax, + - +a,x

nrn

=ZC.
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As in Theorem 5.1, we may show that such solutions exist if and only if
gc.dla,, a,, -, a,) divides ¢. The numerical technique exposed in the
preceding section also extends easily to larger values of n.

Example 3 Find all solutions in integers of 2x + 3y + 4z = 5.

Solution We write

2 3 4 5 2 1 0 35 0 i 0 5
1 0 ¢ ., 1 -1 =2 5 3 -1 -2
0 1 ¢ 0 1 0 -2 1 ]
0 01 0 0 1 0 0 1

This last array represents simultancous equations involving three new
variables, say ¢, u, v. The first line gives the condition u = 5. On substitut-
ing this in the lower lines, we find that every solution of the given equation
in integers may be expressed in the form

x= 3t—-2v-5
y= -2t +5
z= v

where ¢t and v are integers. From the nature of the changes of variables
made, we know that triples (x,y,2z) of integers satisfying the given
equation are in one-to-one correspondence with triples of integers (¢, u, v}
for which « = 5. Hence each solution of the given equation in integers is
given by a unique pair of integers (¢, v).

We now consider the problem of treating simultancous equations.
Suppose we have two equations, say

A =B,
C=0D.

(5.8
By multiplying the first equation by m and adding the result to the second
equation, we may obtain a new pair of equations,
A =B,
C+mA=D+mB.

(5.9)

This pair of equations is equivalent to the original pair (5.8). Here m may
be any real number, but since our interest is in equations with integral
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coefficients, we shall restrict m to be an integer. Similarly, the equation
A =B is equivalent to ¢4 = ¢B provided that ¢ # 0. Again, since our
interest is in equations with integral coefficients, we restrict ¢ to the values
¢ = +1. Finally, we may rearrange a collection of equations without
altering their significance. Hence we have at our disposal three row
operations which we may apply to a system of equations:

(R1) Add an integral multiple m of one equation to another;
(R2) Exchange two equations;
(R3) Multiply both sides of an equation by —1.

By applying these operations in conjunction with the column opera-
tions considered in the preceding section, we may determine the integral
solutions of a system of linear equations.

Example 4 Find all solutions in integers of the simultaneous equations
20x + 44y + 50z = 10,
17x + 13y + 11z = 19.
Solution Among the coefficients of x, y, and z, the coefficient 11 is
smallest. Using operation (C1) and the division algorithm (rounding to the

nearest integer), reduce the coefficients of x and y in the second row
(mod 11

20 4 50 10 -8 -6 50 10
17 13 11 19 -5 2 11 19
1 0 0 -3 1 0 0
0 1 0 0 10
0 0 1 -2 -1 1

The coefficient of least absolute value is now in the second row and
second column. We use operation (C1) to reduce the other coefficients in
the second row (mod 2):

-98 -6 80 10
1 2 1 19

-5 =1 6

There are now two coefficients of minimal absolute value. We use the one
in the first column as our pivot and use operation (C1) to reduce the other
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coefficients in the second row:

—-98 19¢ 178 10
1 0 o 19

- l -2 -1
3 -5 -8
-5 9 1

The coefficient of least nonzero absolute value is unchanged, so we switch
to operation (R1) to reduce the coefficient —98 (mod 1), and then we use
(R2) to interchange the two rows:

0 190 178 1872 1 0 0 19

1 0 ] 19 0 190 178 1872
- I -2 -1 - 1 -2 -1
3 -5 -8 3 -5 -8
=5 9 1 -5 9 1

We now ignore the first row and first column. Among the remaining
coefficients, the one of least nonzero absolute value is 178. We use
operation (C1) to reduce 190(mod 178), obtaining a remainder 12. Then
we use (C1) to reduce 178 (mod 12), obtaining a remainder —2:

1 0 0 19 1 0 o 19

0 12 178 1872 0 12 -2 1872
4 1 -1 4 - 1 -1 14

3 3 -8 303 -53

-5 -2 11 -5 -2 4

Next we use (C2) to reduce 12(mod 2). Then we use (C2) to interchange
the second and third columns, and fnally use (C3) to replace —2 by 2:

1 ] 0 19 1 G ] 19

0 6 -2 1872 0 2 0 1872
A | 83 14 - 1 -14 83
3 =315 -33 3 53 -315
=5 244 41 -5 -4l 244

Let the variables in our new set of equations be called ¢, u, and v, The two
original equations have been replaced by the two new equations 1 - ¢ = 19
and 2 - u = 1872. This fixes the values of ¢ and w. Since 1]19 and 2[1872,
these values are integers: ¢t = 19, u = 936. With these values for ¢ and u,
the bottom three rows above give the equations

X = t — 14u + 830w = 83v — 13085,
y= 3t + 53u — 3150 = — 3150 + 49665,
z= —5t—41lu + 244p = 244p — 38471.
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By making the further change of variable w = v — 158 we may adjust the
constant terms, so that

x 83w + 29,

y = — 315w — 105,

z= 244w + B8l.

As integral solutions of the given equations are in one-to-cne correspon-
dence with integral values of w, we have achieved our goal.

To demonstrate that this procedure will succeed in general, we de-
scribe the strategy more precisely. Suppose we wish to parameterize all
integral solutions of a family of m linear equations in n variables,

ayx, + apx, + 0 +ax, =by,

Aoy Xy + BpyXy + -0 Faa, %, = by,
(5.10)

Xyt QpaXy + 000 Fa,,x, =b,.

We assume that the a;; and the b; are integers, with not all a,; = 0. Our
object is to find an equivalent family of m equations in n equivalent
variables that is diagonal, in the sense that the new coefficients a,; vanish
whenever i # j. Let A = [a;] be the m X n matrix of given coefficients,
let X = {x;] denote the # X 1 matrix (or column vector) of variables, and
let B =[b,] be the m X 1 matrix (or column vector) of given constant
terms. Then the given equations may be expressed as the single matrix
equation AX = B. If we let V' =[v,;] be the n X n matrix that expresses
our original variables in terms of our new variables ¥ = [y,], then V'Y = X,
Initially, V' = I, the identity matrix. We describe a reduction step that
transforms 4 into a matrix A’ = [a},] with the property that a}, = 0,
aj; =0forj>1, and a;, = 0 for i > 1. By repeated use of this reduction
step, A is eventually transformed into a diagonal matrix whose diagonal
entries are non-negative. As we perform row and column operations on A,
we obtain a sequence of coefficient matrices. Let g denote the minimal
absolute value of non-zero elements of the current coefficient matrix.
Locating an element of absolute value u, say in position (i, j,), we use
operation (C1) or operation (R1) to reduce the other coefficients in row i
or column j,. This gives rise to a new coeflicient matrix with a strictly
smaller value of u, unless all the other coefficients in row i, and column
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jp are 0. Since p can take on only positive integral values, this latter
situation must eventually arise. Then we use operations (R2) and (C2) to
move the coefficient from location (iy, j) to (1,1). If the coefficient is
negative, we use (C3) to reverse the sign. Whenever we apply a column
operation to the coefficient matrix 4, we also apply the same column
operation to V, and whenever we apply a row operation to A, we apply
the same row operation to B. The reduction procedure will terminate
prematurely if in the submatrix that remains to be treated all elements are
0. Thus we obtain a diagonal matrix with positive entries in the first r
rows, and (s elsewhere. In developing standard linear algebra over R it is
found that the rank of a matrix is invariant under row or column opera-
tions. Since the row and column operations we are using here are a proper
subset of those used in linear algebra over R, the rank is invariant in the
present situation, as well. As the rank of a diagonal matrix is simply equal
to the number of nonzero elements, we see that the number r is the rank
of the matrix 4 given originally.

Caution At all stages of the reduction process, the column operations
must involve only columns 1 through n. Similarly, the row operations must
involve only rows 1 through m.

In summary, the change of variables I'Y = X has the property that
n-tuples X of integers are in one-to-one correspondence with n-tuples Y
of integers. The m conditions (5.10) on the variables x; are equivalent to
the m conditions

dy,=b (1<j<r), (5.11)
by=0 (r<j<m). (5.12)

Here the d; are the diagonal entries of the new coefficient matrix, and the
b/ are the new constant terms. In order that integral solutions should exist,
it is necessary and sufficient that (5.12) holds, and that

dlb;  (1<j<r). (5.13)

If (5.12) holds but (5.13) fails for some j < r, then there exist rational
solutions but no integral solution. If (5.12) fails for some j > r then the
original equations are inconsistent, and then (5.10) has no solution in real
variables, If (5.11) and (5.12) hold and r = #, then the integral solution is

~ unique (and indeed this is the unique real solution). If (5.12) and (5.13)
hold but » < n then there are infinitely many integral solutions, parame-
terized by the free integral variables y,, |, ¥, 42, " " Yur
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As we experienced in Example 4, the coefficients encountered during
the reduction process may be much larger than the coefficients originally
given. (It is not known precisely how much larger, but it is believed that
they may be very much larger. It is interesting to consider how the
reduction process might be modified in order to minimize this phe-
nomenon.} However, this problem does not arise when the method is
applied to systems of simultaneous congruences (mod g) instead of simul-
taneous equations, for then coefficients may be reduced (mod ¢) during
the reduction process. Here g may be any integer > 1, but it is imperative
that each congruence involves the same modulus g.

Example 5 Find all solutions of the simultaneous congruences
3x + 3z = 1(mod5),
4x —y+ z=3(mod5).

Solution We construct an array of coefficients as before. Using operation
(C1), we add the third column to both columns 1 and 2.

3 0 3 1 1 3 3 1
4 -1 1 3 0 01 3
i 00 - 1 0 0
0 1 90 0 1 90
g ¢ 1 1 1 1

Using (R1), we multiply the second row by 2 and add the result to the first
row. Then we interchange the first and third columns and the first and
second rows.

i 3 0 2 I ¢ 0 3
0 0 1 3 0 3 1 2
- 1 0 0 - 0 0 1
0 1 0 01 0
1 1 1 I 11

Next we multiply the third colurmn by 2 and add the result to the second
column, and then interchange the second and third columns,

1 0 0 3 1 00 3
0 0 1 2 0 1 0 2
- 06 2 1 - 0 1 2
0 1 0 0 0 1
1 3 1 1 1 3

Thus we arrive at a new system of congruences, in variables ¢, u, v, say. We
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see that £ = 3(mod5), u = 2(mod 5), while v can take any value (mod 5).
Thus the given system has five solutions, given by

x=  wu+2v=20+2(mod5),
v (mod 5),

z®mt4+u+ 3v=3p {mod5).

i

¥y = v

In general, the system of simultaneous congruences

ay Xy +apx, + - +ayx, = b (modq),
Gy X, +apx, + 0 +4a,,%x, = b,(mod gq),
n¥) T a3, 2 2 (5.14)
By F GpoXs + - +a,,.x,=b, (modgq),
has a solution (mod q) if and only if
ged.(d,q)lb}  (1<j<r), (5.15)
bj'EO(modq) (r<j<m). (5.16)

Note that these conditions may hold while (5.12) fails. In such a case
the congruences (5.14) have a simultaneous solution even though the
equations (5.10) have no real solution, On the other hand, if (5.10) has a
real solution then (5.12) holds. If we take g to be a multiple of all of the d,
then the conditions (5.15) are equivalent to (5.13). This gives the following
important result.

Theorem 5.2 If the system of linear equations (5.10) has a real solution,
and If the system of congruences (5.14) has a solution for every modulus q,
then the equations (5.10) have an integral solution.

We have actually proved more, since we can determine a particular g
that suffices. (For a more precise characterization of this g in terms of the
original coefficients, see Problem 11 at the end of this section.} The
converse of the theorem is obvious, for if a system of equations (even
nonlinear equations) has an integral solution then this solution is both a
real solution and also a congruential solution for any g. We speak of the
congruential and real solutions as “local,” while an integral solution is
“global.” In this parlance, Theorem 5.2 may be expressed by saying that
the equations (5.10) have a global solution if they are everywhere locally
solvable,
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While our main aims in this Section have been achieved, further
insights may be gained by making greater use of linear algebra, Suppose
that a particular row operation, applied to the m X n matrix A, gives the
matrix 4'. Let R denote the matrix obtained by applying this same row
operation to the m X m identity matrix /,,. Then 4" = R 4. We call such
a matrix R an elementary row matrix. Note that the elementary row
matrices here form a proper subset of the elementary row matrices
defined in standard linear algebra over R, since we have restricted the row
operations that are allowed. Similarly, if a particular column operation
takes 4 to A" and I, to C, then A" = AC, and we call C an elementary
column matrix. Thus the sequence of row and column operations that we
have performed in our reduction process may be expressed by matrix
multiplication,

R,R,_, -+ R,RLACC, -+- C,_,C, =D, (5.17)

where D is an m X n diagonal matrix. (Note that a diagonal matrix is not
necessarily square.} The matrix }~ that allows us to express the original
variables X in terms of our new variables ¥ is constructed by applying the
same column operations to the identity matrix. That is,

V=CC,  CoyCh (5.18)

Similarly, the new constant terms B’ obtained at the end of the reduction
process are created by applving the row operations to the original set B of
constant terms, so that

B'=R,R, | -** R;R,B. (5.19)

It is useful to characterize those matrices that may be written as products
of our efementary row or column matrices.

Definition 5.1 A square matrix U with integral elements is called unimodu-
ar if det(U}= +1.

Theorem 5.3 Let U be an m X m matrix with integral elements. Then the
following are equivalent:
(i} U is unimodular;
(it} The inverse matrix U™ exists and has integral elements;
{(iii) U may be expressed as a product of elementary row matrices.
U=R,R, , - RyR;
(iv) U may be expressed as a product of elementary column matrices,
U=cGC, -+ C,_,C,.
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If U and V are m X m unimodular matrices, then so also is UV, in
view of (3.6). Moreover, /"' is unimodular, by (ii) above. Thus the
collection of all m X m unimodular matrices forms a group.

Proof We first show that (i) implies (ii). From the definition of the adjoint
matrix U¥ it is evident that if U has integral elements then so does U9,
Since U™ = U*¥ /det (U), it follows that U~' has integral elements if
det(U) = +1. We next show that (i) implies (). Since UU™!' =1, it
follows by (3.6) that det(U)det(U~1) = det(J) = 1. But det(UJ) is an
integer if U has integral elements, so from (ii) we deduce that both
det (U) and det (U") are integers. That is, det (U) divides 1. As the only
divisors of 1 are +1, it follows that U is unimodular. Next we show that
(iii) implies (i). It is easy to verify that an elementary row matrix is
unimodular. From (3.6) it is evident that the product of two unimodular
matrices is again unimodular. Thus if U = R, R,_; -+ R,R,, then U is
unimodular.

To show that (i) implies (iii), we first show that if A is an m X n
matrix with integral elements then there exist elementary row matrices
such that

A=RR, " R,_R,T (5.20)

where T is an upper-triangular m X n matrix with integral elements. We
proceed as in Gaussian elimination in elementary linear algebra, except
that we restrict ourselves to the row operations (R1), (R2), and (R3). We
apply these row operations to A as follows. In the first column containing
nonzero elements, say the first column, we apply the division algorithm
and (R1) until only one element in this column is nonzero. By means of
(R2) we may place this nonzero entry in the first row. By (R3) we may
arrange that this element is positive. We now repeat this process on the
columns to the right of the one just considered, but we ignore the first row.
Thus the second column operated on may have two nonzero elements, in
the first and second rows. Continuing in this manner, we arrive at an
upper triangular matrix 7. That is, T = R ,R,_, - R,R; A for suitable
elementary row matrices R;. Hence A4 = R{'R;? --- R;!\R;'T. Since
the inverse of an elementary row matrix is again an elementary row matrix,
we have now expressed A in the desired form (5.20).

To complete the proof that (i) implies (iii), we take 4 = U in (5.20).
Applying (3.6), we deduce that det(7T) = £ 1. But since T is upper-trian-
gular, det(T) is the product of its diagonal elements. As these diagonal
elements are non-negative integers, it follows that each diagonal element
is 1. With this established, we may now apply the row operation (R1}to T'
to clear all entries above the diagonal, leaving us with the identity matrix
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1. That is, T is the product of ¢lementary row matrices, and hence by
(5.20), so also is U.

The equivalence of (i) and (iv) may be established similarly. Alterna-
tively, we observe that R is an elementary row matrix if and only if R’ is
an elementary column matrix. (Here R denotes the transpose of R)If U
is unimodular then U’ is unimodular, and by (iii) we deduce that U’ =
K,R,., -+ R,R, for suitable elementary row matrices R, Hence U =
RiRS -+ Ri_|R!, a product of column matrices.

We call two m X n matrices A and A’ equivalent, and write A ~ A, if
there exists an m X m unimodular matrix { and an n X n unimodular
matrix ¥ such that 4" = UAV. This is an equivalence relation in the usual
sense. With this machinery in hand, we may express (5.17) more compactly
by saying that any matrix A4 is equivalent to a diagonal matrix, say
UAV = D. Then A = U~'DV"!, Writing (5.10) in the form AX = B, we
deduce that U~ 'DV™'X = B. On putting Y = V~'X, UB = B', we are led
immediately to the conclusion that (5.10) is equivalent to DY = B', which
is precisely the content of (5.11) and (5.12).

Owing to ambiguities in our reduction process, the diagonal matrix D
that we have found to be equivalent to A4 is not uniguely defined.
Moreover, two different diagonal matrices may be equivalent, as we see
from the example

ERIHE N

-3 2]l 3 1 2 0 6}

However, it is known that among the diagonal matrices equivalent to a
given matrix A there is a unique one whose nonzero elements 5, 5,," ", 5,
are positive and satisfy the divisibility relations s,15,, 8,185,7*, §,_ 18,
This diagonal matrix § is the Smith normal form of A, named for the
nineteenth-century English mathematician H. J. S. Smith. The numbers s,,
1 < i < r, are called the invariant factors of A. A proof that every m X n
matrix A i5 equivalent to a unique matrix S in Smith normal form is
outlined in Problems 4-9.

FROBIL.LEMS
1. Find all solutions in integers of the system of equations
X, +x, +4xy + 2x, =5,
—3x, —x, —6x,=3,

— X, — Xy +2xy—2x,=1.
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2,

»

*4,

*5

*6.

*7.

*3

-

*9,

*10

*13

-

*12.

Some Diophantine Equations

For what integers a, b, and ¢ does the system of equations
X, +2x,+ 3x;+ 4x,=a,
X, +4x,+ 9x, + 16x, = b,
X+ 8x, + 27x;, + 6dx,=¢
have a solution in integers? What are the solutionsif a = b = ¢ = 17

Suppose that the system of congruences (5.14) has a solution. Show
that if ¢ is prime then the number of solutions is a power of g.

Let 2 and b be positive integers, aéld put g = gcd. (a,b), h = lem.
0 g

{(a, b). Show that [g b j{) it

Using the preceding problem, or otherwise, show that if D is a
diagonal matrix with integral elements then there is a diagonal matrix
§ in Smith normal form such that D ~ 8. Deduce that every m X n
matrix A with integral elements is equivalent to a matrix § in Smith
normal form.

Let 4 be an m X n matrix with integral elements, and let r denote
the rank of 4. For 1 <k <r, let d,{A4) be the greatest common
divisor of the determinants of all &£ X & minors of 4. The numbers
d,(A) are called the determinantal divisors of A. Let R be an
elementary unimodular row matrix, and put 4" = R4. Show that 4
and A’ have the same determinantal divisors.

Use the preceding problem to show that if 4 and B are equivalent
matrices then they have the same determinantal divisors.

Let § be a matrix in Smith normal form whose positive diagonal
elements are s, 5,,°°, 5, Show that d(S) = s5,, d,{(§) =
548,77, d{8) =455, -+ 5. For convenience, put d,(S)= 1. De-
duce that 5, = d,(8)/d,_(S)for1 <k <r

Let § and §' be two m X n matrices in Smith normal form. Using
the preceding problems, show that if § ~ §' then § = 5. Conclude
that the Smith normal form of an m X # matrix A is unique.

Show that if two m X 1 matrices 4 and A’ have the same rank and
the same determinantal divisors then 4 ~ A’

Suppose that the system of equations (5.10) has real solutions, and
that the system of congruences (5.14) has a solution when g =
d{A)/d,_[{(A). Show that the equations (5.10) have an integral
solution. Show also that this is the least integer g for which this
conclusion may be drawn,

Let 4 be an n X n matrix with mtegra] elements and nonzero
determinant. Then the elements of 4" are rational numbers. Show
that the least common denominator of these elements is
d (A /d,_(A).



