請問一個機率問題
有一個兩人合作過三關的抽牌遊戲,每一關皆有兩張牌,一張是出局牌,另一張是過關牌,第一關先由其中一人來抽牌,若抽中過關牌,則兩人一同晉級到下一關,若抽到出局牌則抽牌者不得再參加此遊戲,但另一人可順利晉級到下一關繼續進行抽牌遊戲,依此玩法繼續進行,則兩人中恰有一人通過三關的機率是多少? 兩人中恰有一人通過三關,表示此三次抽牌,必然有兩張過關牌與一張出局牌,故,其機率為 \(\displaystyle \frac{3!}{2!1!}\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)=\frac{3}{8}.\)
或是畫樹狀圖,如下,
┌過關 → 兩人都過關
┌過關┤
│ └出局 → 恰一人過關○
┌過關┤
│ │ ┌過關 → 恰一人過關○
│ └出局┤
│ └出局 → 沒有人過關
│
│ ┌過關 → 恰一人過關○
│ ┌過關┤
│ │ └出局 → 沒有人過關
└出局┤
│
└出局 → 沒有人過關 謝謝weiye老師說明,再請問是否要區別甲乙兩人之不同呢?這樣答案會不同嗎? 不管是抽到過關卡將會〝兩人一同晉級到下一關〞,
或是抽到出局卡〝另一人可順利晉級到下一關〞,
所以,經過〝幾〞次抽牌還活著的,就是過了〝幾〞關,
不用區分是甲或乙過的關。
頁:
[1]