Math Pro 數學補給站's Archiver

三個方法解決所有問題的方法:接受,改變,放開。
   不能接受,那就改變,不能改變,那就放開。

f19791130 發表於 2009-8-21 16:46

三角函數的題目,請教一題

[size=3][font=新細明體]平行四邊形[/font][font=Times New Roman]ABCD[/font][font=新細明體]的邊長為[/font][font=Times New Roman]AB[/font][font=新細明體]線段長[/font][font=Times New Roman]=[/font][font=新細明體]6[/font][font=新細明體],BC線段長=8,又兩對角線的一個交角是60度,求[/font][font=新細明體]平行四邊形[/font][font=Times New Roman]ABCD[/font][font=新細明體]的面積。[/font][/size]
[size=3][font=新細明體]答案為根號[/font][font=Times New Roman]3*14[/font][/size]
[font=新細明體][size=12pt]煩請高手解答[/size][/font]

weiye 發表於 2009-8-21 19:48

[quote]原帖由 [i]f19791130[/i] 於 2009-8-21 04:46 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=1669&ptid=852][img]https://math.pro/db/images/common/back.gif[/img][/url]
平行四邊形ABCD的邊長為AB線段長=6,BC線段長=8,又兩對角線的一個交角是60度,求平行四邊形ABCD的面積。
答案為根號3*14
煩請高手解答 [/quote]
設兩對角線長分別為 \(2a, 2b\),

則由餘弦定理,可得

\[\left\{ \begin{array}{*{20}{c}}
   a^2 + b^2 - 2ab\cos 120^\circ = 8^2  \\
   a^2 + b^2 + 2ab\cos 60^\circ  = 6^2  \\
\end{array} \right.\]

兩式相減,可得 \(\displaystyle 2ab = 28 \Rightarrow ab = 14\)

故,平行四邊形面積\(\displaystyle =4\left(\frac{1}{2}ab\sin60^\circ\right)=14\sqrt{3}.\)

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.