Math Pro 數學補給站's Archiver

不懂就要問,
想保住面子的人,
最後連裡子也會輸掉。

CingUng 發表於 2009-7-6 14:37

98國立南科國際實驗高級中學-雙語部高中數學

98國立南科國際實驗高級中學-雙語部高中數學

bugmens 發表於 2009-7-6 18:30

填充題
2.
Calculate \( \displaystyle cos \frac{\pi}{17} \cdot cos \frac{2 \pi}{17} \cdot cos \frac{4 \pi}{17} \cdot cos \frac{8 \pi}{17}=\underline{\frac{1}{16}} \)
[提示]
\( \displaystyle \frac{1}{sin \frac{\pi}{17}}\cdot sin \frac{\pi}{17} \cdot cos \frac{\pi}{17} \cdot cos \frac{2 \pi}{17} \cdot cos \frac{4 \pi}{17} \cdot cos \frac{8 \pi}{17} \)

3.
In the coordinates plane,OABC is a rectangle , let A(4,3),\( \overline OC=2 \),then the coordinates of point B is \( \underline{(2.8,4.6)} \)
[解答]
\( \displaystyle \sqrt{29} \cdot (\frac{4}{5}+\frac{3}{5}i) \cdot (\frac{5}{\sqrt{29}}+\frac{2}{\sqrt{29}}i)=\frac{14}{5}+\frac{23}{5}i \)

10.
Evaluate the integral \( \displaystyle \int^2_0 \frac{2x+4}{x^2+4x+3} dx=\underline{ln5} \)
[提示]
\( \displaystyle \frac{2x+4}{x^2+4x+3}=\frac{1}{x+1}+\frac{1}{x+3} \)

[[i] 本帖最後由 bugmens 於 2009-7-6 06:55 PM 編輯 [/i]]

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.