Math Pro 數學補給站's Archiver

付出最多的人,
也是收穫最多的人。

ksjeng 發表於 2009-5-26 20:59

97松農-積分

此題我花六小時
還是不得其解[img]http://farm4.static.flickr.com/3321/3565993289_21b3f0dcea_b.jpg[/img]
請老師撥冗解題
不勝感荷

weiye 發表於 2009-5-26 23:04

\[\int \frac{x + 1}{\sqrt {4 - 6x - x^2} }dx = \int \frac{(x + 3) - 2}{\sqrt {13 - (x+3)^2} }dx \]
(令 \(t=x+3\Rightarrow dt = dx\))
\[ =  \int \frac{t-2}{\sqrt {13-t^2}} dt\]
\[ = \int \frac{t}{\sqrt {13-t^2}} dt - \int \frac{2}{\sqrt {13-t^2}} dt\]
\[ =  \int -\frac{d(13-t^2)}{2\sqrt {13-t^2}} - 2 \int \frac{1}{\sqrt{13}\cdot\sqrt {1-\left(\frac{t}{\sqrt{13}}\right)^2}} dt\]
\[ =  -\sqrt{13-t^2} - 2 \int \frac{1}{\sqrt {1-\left(\frac{t}{\sqrt{13}}\right)^2}} d\left(\frac{t}{\sqrt{13}}\right)\]
(令 \(\displaystyle\frac{t}{\sqrt{13}}=\sin\theta \Rightarrow d\left(\frac{t}{\sqrt{13}}\right) = \cos\theta\, d\theta\))
\[ =  -\sqrt{13-t^2} - 2 \int \frac{1}{\sqrt {1-\sin^2\theta}}\cos\theta d\theta\]
\[ =  -\sqrt{13-t^2} - 2 \int d\theta\]
\[ =  -\sqrt{13-t^2} - 2 \theta + c\]
\[ =  -\sqrt{4-6x-x^2} - 2 \sin^{-1}\left(\frac{t}{\sqrt{13}}\right) + c\]
\[ =  -\sqrt{4-6x-x^2} - 2 \sin^{-1}\left(\frac{x+3}{\sqrt{13}}\right) + c\]
其中, \(c\) 為常數。

ksjeng 發表於 2009-5-27 19:11

老師的積分功力超強
佩服 謝謝您
教安

頁: [1]

論壇程式使用 Discuz! Archiver 6.1.0  © 2001-2007 Comsenz Inc.