Math Pro 數學補給站's Archiver

不懂就要問,
想保住面子的人,
最後連裡子也會輸掉。

arend 發表於 2009-3-18 18:08

95台灣師大推薦甄試

設\(x,y\)為實數,\(x^2-xy+4y^2=1\),求\(x^2+4y^2\)的最大與最小值

有人可以提供代數解與幾何解嗎
謝謝

weiye 發表於 2009-3-18 19:03

先來個微積分解法好了。 :p

以下利用 [url=http://en.wikipedia.org/wiki/Lagrange_multipliers]Lagrange multiplier[/url] 求解.

解:

\(x^2-xy+4y^2=1\) 的 \(\delta = (-1)^2 - 4\cdot 1\cdot 4 <0\),圖形為橢圓或其退化的情形.

所以 \(x^2+4y^2\) 會有最大值與最小值.

令 \[f(x,y,\lambda) = x^2 + 4y^2 +\lambda \left(x^2 -xy +4y^2 - 1\right),\]

由 \( \nabla_{x,y,\lambda} f(x , y, \lambda)=0\),得

\[\frac{{\partial f}}{{\partial x}} = \frac{{\partial f}}{{\partial y}} = \frac{{\partial f}}{{\partial \lambda }} = 0,\]

\[2x + \lambda\left(2x -y\right) =0 .......(1)\]
\[8y + \lambda\left(-x+8y\right)=0 .......(2)\]
\[x^2 -xy +4y^2 - 1=0 .......(3)\]
由(1)(2),整理得
\[⇒ 2\left(1+\lambda\right) x= \lambda y 且 8\left(1+\lambda\right)y = \lambda x .......(*)\]

兩式相乘可得
\[ 16\left(1+\lambda\right)^2xy = \lambda^2 xy\]
\[⇒ xy\left(16\left(1+\lambda\right)^2 - \lambda^2\right)=0\]
\[⇒ xy\left(3\lambda+4\right)\left(5\lambda+4\right)=0\]
\[⇒ x=0 或 y=0 或 \lambda = -\frac{4}{5} 或 \lambda = -\frac{4}{3}\]

由(*)可知若 \(x,y\) 中有任一者為 \(0\),則另一數亦為零,但帶入(3)不合,所以 \(xy\neq0\),

1. 若 \(\lambda = -\frac{4}{5}\) ,則可以解得 \(x^2 = \frac{4}{10},\, y^2 = \frac{1}{10}  ⇒  x^2 + 4y^2 = \frac{4}{5}.\)

2. 若 \(\lambda = -\frac{4}{3}\) ,則可以解得 \(x^2 = \frac{2}{3},\, y^2 = \frac{1}{6}  ⇒  x^2 + 4y^2 = \frac{4}{3}.\)

故,最大值為 \(\frac{4}{3}\),最小值為 \(\frac{4}{5}\).










再來個算幾不等式的[b][color=Red]另解[/color][/b],



\[x^2-xy+4y^2=1 ⇒ x^2 + 4y^2 = 1+xy ........(※)\]

由算幾不等式,可得

\[\frac{x^2 + 4y^2}{2}\geq \sqrt{x^2 \cdot 4y^2}\]
\[⇒ \frac{1+xy}{2}\geq 2 \left|xy\right|\]
\[⇒ -\frac{1+xy}{2}\leq 2 xy \leq \frac{1+xy}{2}\]
\[⇒ -\frac{1}{5}\leq xy \leq \frac{1}{3}\]
\[⇒ \frac{4}{5}\leq 1+xy \leq \frac{4}{3}\]
由(※),
\[⇒ \frac{4}{5}\leq x^2+4y^2 \leq \frac{4}{3}\]

arend 發表於 2009-3-19 17:41

請問式中
-1/5<=xy<=1/3
-1/5 與1/3怎麼得到的
謝謝

weiye 發表於 2009-3-19 21:59

上一個行的兩個不等式,分別處理,就可以得到了。

arend 發表於 2009-3-19 22:40

謝謝, 了解了
感激ㄛ

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.