Math Pro 數學補給站's Archiver

先為別人想,
再為自己想。

HSH 發表於 2008-10-11 16:43

求救!線性代數的rank和reduced row echelon form的問題

[size=4]請問一下這一題敘述用這種方式解釋對嗎?[/size]
[size=4](2)The rank of a m*n matrix A can not be zero, the term "full rank" means the rank of A equals m.[/size]
[color=navy][size=4][自解][/size]
[size=4]No!零矩陣無rank,且full rank=min(m,n),即m,n中取最小值,不一定等於m[/size][/color]
[size=4][/size]
[size=4]那想請問以下兩題是對的還是錯的?又該怎麼解釋呢?我不會寫[/size]
[size=4](7)Let Rref is the reduced row echelon form of matrix A, then the column space exactly equal to C(Rref) and the same for null space N(A)=N(Rref)[/size]
[size=4][/size]
[size=4](9)IF rank of A, an m*n matrix, is n, then the nullity(i.e. dimension of null space) is 0.[/size]

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.