完全平方數
n為自然數,A=11...122....25,有n個1,有n+1個2,有1個5,求證A為完全平方數 [quote]原帖由 [i]chu1976[/i] 於 2008-6-27 08:46 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=890&ptid=586][img]https://math.pro/db/images/common/back.gif[/img][/url]n為自然數,A=11...122....25,有n個1,有n+1個2,有1個5,求證A為完全平方數 [/quote]
9× 11...122....25(有n個1,有n+1個2,有1個5) = 10...010...025(前面有 n-1 個0, 後面有 n 個0)
= 10^(2n+2) + 10^(n+2) + 25
= { 10^(n+1) + 5 }^2
因此,
11...122....25(有n個1,有n+1個2,有1個5) = { (10^(n+1) + 5)/3 }^2,
且因為 10^(n+1) + 5≡1^(n+1)+5≡0 (mod 3),
所以 (10^(n+1) + 5)/3 是整數,
故,
11...122....25(有n個1,有n+1個2,有1個5) 是完全平方數。
頁:
[1]