Math Pro 數學補給站's Archiver

當你真心想要完成一件事的時候,
整個宇宙都會聯合起來幫助你完成。

chu1976 發表於 2008-5-14 21:19

圓與直線系

如何證明:通過L:ax+by+c=0與C:x^2+y^2+dx+ey+f=0交點的圓方程式為x^2+y^2+dx+ey+f+k(ax+by+c)=0

weiye 發表於 2008-5-14 21:30

[quote]原帖由 [i]chu1976[/i] 於 2008-5-14 09:19 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=782&ptid=541][img]https://math.pro/db/images/common/back.gif[/img][/url]
如何證明:通過L:ax+by+c=0與C:x^2+y^2+dx+ey+f=0交點的圓方程式為x^2+y^2+dx+ey+f+k(ax+by+c)=0 [/quote]

1. 設 (x_0, y_0) 為 L 與 C 的交點,則  a x_0+b y_0+c=0 且 (x_0)^2+(y_0)^2+d (x_0)+e (y_0)+f=0,

 故 (x_0, y_0) 也滿足 (x_0)^2+(y_0)^2+d (x_0)+e (y_0)+f+k(a x_0+b y_0+c)=0,

 也就是 x^2+y^2+dx+ey+f+k(ax+by+c)=0 會通過 L 與 C 的交點。

2. x^2+y^2+dx+ey+f+k(ax+by+c)=0 配方後只有可能為圓、點、空集合,但因為它通過 L 與 C 的兩交點,所以為圓。

頁: [1]

論壇程式使用 Discuz! Archiver 6.1.0  © 2001-2007 Comsenz Inc.