[問題]如何証明dimCS(A)=dimRS(A) ?
[img]http://img182.imageshack.us/img182/8782/66048854ta0.jpg[/img]Note:
CS(A)=the column space of A
RS(A)=the row space of A
------
想了好久都不曉得從哪裡著手T_______T
麻煩板上大大們指點迷津嚕
3Q~ 或許可以利用(先證明) dim RS(A) = rank(A) 且 dim CS(A)=rank(A).
或是更細一點,先證明 [url=http://www.maths.uwa.edu.au/%7Egregg/FirstYear/rowcolrank.pdf]the row rank of [i]A[/i] = the column rank of [i]A[/i][/url][i].[/i]
舉手
仔細讀過大大的講義我發現...
有一個地方還是很困難>""<
怎麼去說明...
A :M_mxn matrix
R : row echelon matrix
rank A = rank R
ps:之前我們老師上課的時候直接把它寫在定義欄裡
而我也曉得這件事是對的
現在的困難是不會用証明的方式去寫它 1. 那不是我的講義,是別人滴啦。
2. 那是定義,不用證明啦,
因為 row rank A 就是定義成當 A 作矩陣的列運算化到簡化梯陣之後,
到最後每行的第一個不為零的數字,所在的那行只有該數字不為零,
(那個數字稱為 pivot )
而化簡到最後有多少個 pivot,就稱為有多少 (row) rank.
謝謝^^
謝謝大大的提示^^我想我了解哩~~~
3Q~
頁:
[1]