Math Pro 數學補給站's Archiver

記住該記住的,忘記該忘記的。
改變能改變的,接受不能改變的

koeagle 發表於 2024-4-16 09:04

113鳳山高中

113鳳山高中,61分進複試。

想請教填充7、11、12題,謝謝。

[[i] 本帖最後由 koeagle 於 2024-4-16 11:46 編輯 [/i]]

bugmens 發表於 2024-4-16 10:16

1.
已知\(m,n\)為正整數,且\(\sqrt{m}+\sqrt{n}=\sqrt{2023}\),試求數對\(m,n)\)有[u]   [/u]組解。
連結有解答,[url]https://math.pro/db/thread-664-1-1.html[/url]

3.
已知方陣\(A=\left[\matrix{0&0&-2\cr 1&2&1 \cr 1&0&3}\right]\),\(A^2=\left[\matrix{-2&0&-6\cr 3&4&3 \cr 3&0&7}\right]\)。設\(n\)為正整數,試用\(n\)表方陣\(A^n\)之一般式為[u]   [/u]。
[url]https://math.pro/db/viewthread.php?tid=661&page=3#pid14875[/url]

4.
假設地球為一球體,今以地球球心為原點,地球半徑為單位長,建立一空間直角坐標系。設地球表面上甲、乙、丙三地,甲、乙兩地的座標分別為\((1,0,0)\)及\(\displaystyle \left(\frac{1}{2},\frac{1}{2},\frac{\sqrt{2}}{2}\right)\),丙地為甲乙兩地球面上最短路徑之中點,試求丙地之座標為[u]   [/u]。
[url]https://math.pro/db/viewthread.php?tid=960&page=1#pid2178[/url]

1.
試求\(\left|\matrix{tan40^{\circ}&tan10^{\circ}&tan50^{\circ}\cr tan20^{\circ}&tan50^{\circ}&tan70^{\circ}\cr tan10^{\circ}&tan70^{\circ}&tan80^{\circ}}\right|\)之值。

計算\(\Delta=\left|\matrix{tan70^{\circ}&tan20^{\circ}&tan50^{\circ}\cr tan80^{\circ}&tan10^{\circ}&tan70^{\circ}\cr tan60^{\circ}&tan30^{\circ}&tan30^{\circ}}\right|=\)[u]   [/u]。
高中數學101 P202

3.
\(f(x)=\sqrt{x-27}+\sqrt{40-x}+\sqrt{x}\),其中\(27<x<40\),試求\(f(x)\)最大值為何?
[url]https://math.pro/db/viewthread.php?tid=661&page=3#pid22174[/url]

thepiano 發表於 2024-4-16 13:03

回覆 1# koeagle 的帖子

第 7 題
[x/2] - [x/3] = x/7
整數減整數是整數,故 x 為 7 的倍數

(x/2 - 1) - x/3 < x/7 < x/2 - (x/3 - 1)
-42 < x < 42

代入檢驗,可知 x = 21、7、0、-7、-14、-28


第 11 題
O(0,0)、P(12,5)

OP 交圓 (x - 12)^2 + (y - 5)^2 = 2^2 於 C
OP = 13,OC = 11

作 C 關於 y = √3x 的對稱點 E;關於 x 軸的對稱點 F
OE = OF = OC = 11,∠EOF = 120 度

EF 交 y = √3x 於 A;交 x 軸於 B
所求為 EF

[[i] 本帖最後由 thepiano 於 2024-4-16 13:19 編輯 [/i]]

thepiano 發表於 2024-4-16 15:18

回覆 1# koeagle 的帖子

第 12 題
考慮 "至少有 1 個數字不超過 1" 和 "至少有 2 個數字不超過 2" 就好

不用考慮 "至少有 3 個數字不超過 3",因為每個字串中的 4 個數字都不超過 3

用反面做法
全部 - "所有數字都超過 1" - "恰有 1 個數字(0 或 1 或 2)不超過 2,其他 3 個都超過 2"
= 4^4 - 2^4 - 4 * 3 + 4
= 232

最後加 4,是因為 2333、3233、3323、3332 這四個被扣了兩次,要加回來

cut6997 發表於 2024-4-16 15:30

想詢問一下計算第三題
本來是想配柯西
(a(x-27)+b(40-x)+c(x))(1/a+1/b+1/c)>=(所求)^2
為了消掉x項會有a+c=b
且取等條件可成立,a(x-27):b(40-x):c(x)=1/a:1/b:1/c
之後就沒想法了

lovejade 發表於 2024-4-16 15:53

想請教一下,填充第2跟5題,謝謝

zidanesquall 發表於 2024-4-16 17:04

回覆 6# lovejade 的帖子

#2  

| det(4OA; 4OB; 4OC) |-| det(2OA; 2OB; 2OC) | =4^3* | det(OA; OB; OC) |  -2^3*| det(OA; OB; OC) | =56*20=1120

#5

假設 首項 a,b  公差 d, 公比r
列出式子為

\(C_1=a+b=1, C_2=a+d+br=4, C_3=a+2d+br^2=15, C_4=a+3d+br^3=2 \)
利用 \( a=1-b \) 代入 \(C_1, C_2, C_3 \) 解 \(b, d, r\)

thepiano 發表於 2024-4-16 17:08

回覆 6# lovejade 的帖子

第 5 題
a_1 用 a 取代,b_1 用 b 取代

a + b = 1
a + d + br = 4
a + 2d + br^2 = 15
a + 3d + br^3 = 2

第二式減第一式:d + b(r - 1) = 3
第三式減第二式:d + br(r - 1) = 11
第四式減第三式:d + br^2(r - 1) = -13

第六式減第五式:b(r - 1)^2 = 8
第七式減第六式:br(r - 1)^2 = -24

r = -3,b = 1/2,a = 1/2,d = 5

c_6 = a_6 + b_6 = 51/2 + (-243/2) = -96

lovejade 發表於 2024-4-16 17:16

謝謝老師們的回覆,我懂了

koeagle 發表於 2024-4-16 17:50

回覆 3# thepiano 的帖子

謝謝 thepiano 老師。

koeagle 發表於 2024-4-16 17:52

回覆 5# cut6997 的帖子

113鳳山高中計算3
108中科實中雙語部考過

koeagle 發表於 2024-4-16 17:57

想請教計算第1題,謝謝。

thepiano 發表於 2024-4-16 17:57

回覆 5# cut6997 的帖子

a + c = b
a^2(x - 27) = b^2(40 - x) = c^2(x)
由於 27 < x < 40,讓 x = 36,則 x - 27、40 - x、x 都是完全平方數
9a^2 = 4b^2 = 36c^2
當 3a = 2b = 6c 時,有 a + c = b

thepiano 發表於 2024-4-16 18:08

回覆 12# koeagle 的帖子

計算第 1 題
101 雄中考過,參考 Ellipse 兄的解法
[url]http://www.shiner.idv.tw/teachers/viewtopic.php?p=7464#p7464[/url]

koeagle 發表於 2024-4-16 18:15

回覆 14# thepiano 的帖子

謝謝老師!

cut6997 發表於 2024-4-16 18:26

謝謝 koeagle 老師 和 thepiano 老師
原來多設了一個變數,搞得做不太動
以平方數直接切入感覺更是玄妙

jerryborg123 發表於 2024-4-16 20:32

回覆 3# thepiano 的帖子

我的作法前面跟鋼琴老師大致相同
有設x=7k再去解不等式,解出-4<=k<=3
但想不通為什麼這之中還會有不合的情形?只能帶入檢驗嗎?

thepiano 發表於 2024-4-16 21:57

回覆 17# jerryborg123 的帖子

高斯方程就是這樣,不過沒幾個,驗一下很快

jerryborg123 發表於 2024-4-17 11:28

請教填充9
用一般圓盤法計算過程複雜,不知道有沒有更好的作法.

chu 發表於 2024-4-17 11:43

計3

人家數字已規劃好了!!
[attach]6961[/attach]

頁: [1] 2

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.