Math Pro 數學補給站's Archiver

人沒有天生的窮命和賤命,
只有你是用什麼樣的心態來磨練自己。

Superconan 發表於 2024-6-5 00:30

回覆 22# thepiano 的帖子

老師好,我問了四位老師,我們都覺得 a_2n 應該是有 2n 項。
不知道是不是哪裡想錯?
[attach]7144[/attach]

thepiano 發表於 2024-6-5 06:02

回覆 23# Superconan 的帖子

我是把一般項 √[2n * (2n+ 1)] 的 n 用 1、2、3、…、n 代入
應該是我認知錯誤,擾亂了您,抱歉
看來我也該退休了

Superconan 發表於 2024-6-5 15:50

回覆 22# thepiano 的帖子

老師言重了,您無私的解題幫助眾多考生,我們非常感謝。
老師非常有權威,所以我們懷疑自己很久,反覆確認以後才敢提問。
千萬別太早退休~

Superconan 發表於 2024-7-21 14:47

請教第 4 題

thepiano 發表於 2024-7-21 21:56

回覆 24# Superconan 的帖子

第 4 題
第 1 頁,cut6997 老師的第 8 題

余師傅 發表於 2024-8-13 14:38

回覆 25# thepiano 的帖子

想請問為什麼這樣算會是答案?
我用GGB畫出來只有發現最大值不會發生在兩個圖形相切時

thepiano 發表於 2024-8-14 13:34

回覆 26# 余師傅 的帖子

第 4 題
cut6997 老師的方法是很高明的

先找出與 y = -(x + 5)^2 相切且斜率為 1 的直線 y = x + 5.25
y = -(x + 5)^2 的圖形沿著向量 (1,1) 的方向平移,即沿著 y = x + 5.25 平移
切點 (-5.5 + t,-0.25 + t),其中 t ≧ 0

y = -(x + 5)^2 在平移過程中,與 y = x^2 有交點,且交點 y 坐標有最大值
出現在切點 (-5.5 + t,-0.25 + t) 在 y = x^2 上時

答案應是 (23 + 2√22)/4

[[i] 本帖最後由 thepiano 於 2024-8-14 13:52 編輯 [/i]]

no40508888 發表於 2024-8-16 11:59

9.
[attach]7234[/attach]

peter0210 發表於 2024-8-17 15:46

第四題

頁: 1 [2]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.