112花蓮縣國中小聯招
5.正實數數列\(\langle\;a_n\rangle\;\)滿足遞迴關係式\(a_1=1\),\(\displaystyle a_{n+1}=a_n+\sqrt{a_n}+\frac{1}{4}\),求\(a_{99}\)的值為何?
(A)2400 (B)2401 (C)2500 (D)2501
[提示]
\(\displaystyle \sqrt{a_{n+1}}^2=(\sqrt{a_n}+\frac{1}{2})^2\)
我的教甄準備之路 求數列一般項,[url]https://math.pro/db/viewthread.php?tid=661&page=3#pid9507[/url]
15.
函數\(f(x,y)=x\cdot y\),在\(\displaystyle \frac{x^2}{8}+\frac{y^2}{2}=1\)的極大值為何?
(A)4 (B)3 (C)2 (D)1
23.
正七邊形ABCDEFG的邊長為2,則向量AB與向量BE的內積的值為何?
(A)\(\displaystyle -\frac{7}{2}\) (B)\(-3\) (C)\(\displaystyle -\frac{5}{2}\) (D)\(-2\)
[url]https://math.pro/db/thread-1067-1-1.html[/url] Q25.
設複數\(z\)滿足\(|\;z^2+1|\;=|\;z|\;\),則\(|\;z|\;\)的最大值為何?
(A)\(\displaystyle \frac{\sqrt{5}-1}{4}\) (B)\(\displaystyle \frac{\sqrt{5}+1}{4}\) (C)\(\displaystyle \frac{\sqrt{5}-1}{2}\) (D)\(\displaystyle \frac{\sqrt{5}+1}{2}\)
[解答] Q25.
設複數\(z\)滿足\(|\;z^2+1|\;=|\;z|\;\),則\(|\;z|\;\)的最大值為何?
(A)\(\displaystyle \frac{\sqrt{5}-1}{4}\) (B)\(\displaystyle \frac{\sqrt{5}+1}{4}\) (C)\(\displaystyle \frac{\sqrt{5}-1}{2}\) (D)\(\displaystyle \frac{\sqrt{5}+1}{2}\)
[另解] Q24
設\(\alpha\)為不超過\(45^{\circ}\)的銳角。若已知\(cot2\alpha-\sqrt{3}=sec\alpha\),則\(\alpha\)的大小為何?
(A)\(10^{\circ}\) (B)\(20^{\circ}\) (C)\(30^{\circ}\) (D)\(40^{\circ}\)
[解答] Q25 另解2
頁:
[1]