例題:平面向量─尤拉線
[img]https://math.pro/temp/qq26.jpg[/img][img]https://math.pro/temp/qq27.jpg[/img]
[b][size=5]補充[/size][/b]:設 \(\triangle ABC\) 三邊長分別為 \(a,b,c\),且外接圓半徑為 \(R\),求證:\(\overline{HK}^2=9R^2-\left(a^2+b^2+c^2\right)\)
證明:
承前述證明知 \(2\vec{GK}=-\vec{GH}\)
\(\displaystyle \Rightarrow\vec{KH}=3\vec{KG}\)
因此 \(\vec{KH}=\vec{KA}+\vec{KB}+\vec{KC}\)
\(\displaystyle \Rightarrow\left|\vec{KH}\right|^2=\left|\vec{KA}\right|^2+\left|\vec{KB}\right|^2+\left|\vec{KA}\right|^2+2\vec{KA}\cdot\vec{KB}+2\vec{KB}\cdot\vec{KC}+2\vec{KC}\cdot\vec{KA}\)
\(\displaystyle =R^2+R^2+R^2+2\cdot R\cdot R\cdot \frac{R^2+R^2-c^2}{2\cdot R\cdot R}+2\cdot R\cdot R\cdot \frac{R^2+R^2-a^2}{2\cdot R\cdot R}+2\cdot R\cdot R\cdot \frac{R^2+R^2-b^2}{2\cdot R\cdot R}\)
\(\displaystyle =9R^2-\left(a^2+b^2+c^2\right)\)
類題:102 北門高中,填充第 12 題 ( [url]https://math.pro/db/thread-1711-1-1.html[/url] )
頁:
[1]