請教一題
\(ABCD\)是菱形,\(\angle BAD=120^{\circ}\),\(E\)是\(\overline{CD}\)中點,\(F\)在\(\overline{BD}\)上且\(\overline{PC}+\overline{PE}=1\),則\(\overline{AB}\)的最大值為何?一個據說是國二的考題
求救
回復 1# kuen 的帖子
注意到 \(\overline {PA} = \overline {PC} \),因此有 \(\overline {PC} + \overline {PE} = \overline {PA} + \overline {PE} \ge \overline {AE} \) \( \Rightarrow \overline {AE} \le 1\)\(\Delta ACD\)為正三角形且 E 為 \(\overline {CD} \) 中點,故 \(\overline {AD} = \frac{2}{{\sqrt 3 }}\overline {AE} \le \frac{2}{3}\sqrt 3 \)
因此 \(\overline {AB} = \overline {AD} \le \frac{2}{3}\sqrt 3 \)
當 P 為\(\overline {AE} \) 和 \(\overline {BD} \) 的交點時,\(\overline {AB} \) 有最大值 \(\frac{2}{3}\sqrt 3 \) 多~謝
頁:
[1]