Math Pro 數學補給站's Archiver

三個方法解決所有問題的方法:接受,改變,放開。
   不能接受,那就改變,不能改變,那就放開。

kuen 發表於 2021-6-29 11:08

請教一題

\(ABCD\)是菱形,\(\angle BAD=120^{\circ}\),\(E\)是\(\overline{CD}\)中點,\(F\)在\(\overline{BD}\)上且\(\overline{PC}+\overline{PE}=1\),則\(\overline{AB}\)的最大值為何?

一個據說是國二的考題
求救

tsusy 發表於 2021-6-29 13:00

回復 1# kuen 的帖子

注意到 \(\overline {PA}  = \overline {PC} \),因此有 \(\overline {PC}  + \overline {PE}  = \overline {PA}  + \overline {PE}  \ge \overline {AE} \) \( \Rightarrow \overline {AE}  \le 1\)

\(\Delta ACD\)為正三角形且 E 為 \(\overline {CD} \) 中點,故 \(\overline {AD}  = \frac{2}{{\sqrt 3 }}\overline {AE}  \le \frac{2}{3}\sqrt 3 \)

因此 \(\overline {AB}  = \overline {AD}  \le \frac{2}{3}\sqrt 3 \)

當 P 為\(\overline {AE} \) 和 \(\overline {BD} \) 的交點時,\(\overline {AB} \) 有最大值 \(\frac{2}{3}\sqrt 3 \)

kuen 發表於 2021-6-29 14:48

多~謝

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.