Math Pro 數學補給站's Archiver

所謂「信心」,
是無論景氣再壞,都要相信自己有能力。

Superconan 發表於 2021-5-9 18:20

110臺北市高中聯招

請教計算第 3 題、第 4 題

110.05.12
試題疑義後,多選第 3 題原答案 ACDE 改成 ACD 。

bugmens 發表於 2021-5-9 18:39

二、非選擇題
(一)填充題
2.
求方程式\(\root 3\of{(10+x)^2}+\root 3\of{(3+x)^2}=\root 3\of{(10+x)(-3-x)}+7\)的所有解。
(91台灣師大推薦甄試,97中和高中,[url]https://math.pro/db/thread-2418-1-1.html[/url])

解方程\(\root 3\of{(8-x)^2}+\root 3\of{(27+x)^2}=\root 3\of{(8-x)(27+x)}+7\)?
(高中數學競賽教程P388)

3.
將4個a,2個b及2個c共8個字母排成一列,則相同字母不相鄰的排法有幾種?
[url]https://math.pro/db/viewthread.php?tid=1610&page=1#pid8194[/url]

4.
已知\(f(x)\)為10次多項式,且滿足\(\displaystyle f(k)=\frac{1}{k},k=1,2,3,\dots,11\),求\(f(12)\)之值。
請參閱[url]https://math.pro/db/viewthread.php?tid=1195&page=1#pid4108[/url]

7.
已知\(n\)為正整數,且方程式\(x^{10}+(nx-1)^{10}=0\)的10個複數根為\(z_k,\overline{z_k}(k=1,2,3,4,5)\),求\(\displaystyle \sum_{k=1}^5\frac{1}{z_k \overline{z_k}}\)。(以\(n\)表示)
(1994AIME,[url]https://artofproblemsolving.com/wiki/index.php/1994_AIME_Problems/Problem_13[/url])

103大同高中,[url]https://math.pro/db/viewthread.php?tid=1873&page=2#pid10169[/url]

107建國中學,[url]https://math.pro/db/thread-2946-1-5.html[/url]

二、計算證明題
1.
五人進行「剪刀、石頭、布」的猜拳,五人同時出拳,若能分出勝負(例如:兩人出剪刀,三人出石頭時,算是分出勝負;但五人都出剪刀時,不算分出勝負),則猜拳停止;若分不出勝負,則繼續猜拳,直到分出勝負為止。試求猜拳次數的期望值。

112.7.5補充
112金門高中考相同題目,[url]https://math.pro/db/thread-3771-1-1.html[/url]

以剪刀,石頭,布猜拳。
(a)若兩人猜,平均要猜幾次才分勝負。
(b)現有三人一起猜拳(三人一起出拳)。若兩人勝一人,則勝者二人繼續猜。若一人勝二人,此人勝出。問平均要猜幾次,才能剛好有一人勝出。
(95台大數學甄選入學)

2.
在坐標平面上,\(A,B,C\)三點形成直角三角形,其中\(∠C=90^{\circ}\),\(\overline{AB}\),又過\(A\)與\(B\)兩點的中線方程式分別為\(y=x+2021\)與\(y=2x+110\)。試求三角形\(ABC\)的面積。

老師要求小明用已知的\(A\)、\(B\)、\(C\)三個點求出\(\Delta ABC\)的三條中線方程式,但小明求出其中兩條中線的方程式為\(x+y=1\)、\(3x+2y=4\)後,卻忘了頂點\(A(2,1)\)以外的兩個點之坐標。若\(G\)為\(\Delta ABC\)之重心,請選出正確的選項。
(1)重心\(G\)為\((2,-1)\)
(2)點\(D(2,-2\)為\(∠A\)對邊的中點
(3)\(6,-7\)為\(\Delta ABC\)其中一個頂點
(4)\(\vec{AB}\)與\(\vec{AG}\)在\(\vec{AC}\)上的正射影向量相同
(5)\(\Delta ABC\)的面積為24
(102台中區模擬考,[url]https://math.pro/db/thread-10-1-1.html[/url])

laylay 發表於 2021-5-9 19:21

回復 1# Superconan 的帖子

計算證明題3.
正三角形\(ABC\)的邊長為1,且\(D\)、\(E\)分別為邊\(\overline{AB}\)、\(\overline{AC}\)上的點。將三角形\(ADE\)沿線段\(\overline{DE}\)摺疊時,頂點\(A\)恰落在邊\(\overline{BC}\)上,試問在此條件下,線段\(\overline{AD}\)的最小值等於多少?
[解答]
設 A對DE的對稱點為F,  a=角BAF
則 AF/sin60度=1/sin(60度+a) ,  
     AD=(AF/2)/cosa=ㄏ3/[ 4sin(60度+a)*cosa]
          =ㄏ3/[ 4(sin60度*cosa+cos60度*sina)*cosa]
          =ㄏ3/[sin(2a)+ㄏ3*cos(2a)+ㄏ3]>=ㄏ3/(2+ㄏ3)=2ㄏ3-3,此數為所求
         此時 a=15度 , AE<AE/sin75度=AD/sin45度<1/2/sin45度<1,D在AB上,E在AC上,沒有問題

flyinsky218 發表於 2021-5-9 19:35

計算三 垂直時會有最小值
想問計算2

czk0622 發表於 2021-5-9 19:39

回復 1# Superconan 的帖子

計算證明題4.
設數列\(\langle\;a_n\rangle\;\)滿足\(\displaystyle a_n=\int_0^1 (1-x^2)^{\frac{n}{2}}dx\),\(n=0,1,2,3,\ldots\)。
(1)證明:\(\displaystyle a_n=\frac{n}{n+1}a_{n-2},n\ge 2\)。
(2)試求\(\displaystyle \lim_{n\to \infty}\frac{a_{n+1}}{a_n}\)的值。
[解答]
計算4(1)
\(a_{n}=\int^{1}_{0}(1-x^{2})^{n/2}dx\)
\( \ \ \ =\int^{\pi/2}_{0}\cos^{n}{\theta}d{\sin{\theta}}(=\int^{\pi/2}_{0}\cos^{n+1}{\theta}d{\theta}\))
\( \ \ \ =\cos^{n}{\theta}\sin{\theta}|^{\pi/2}_{0}+\int^{\pi/2}_{0}n\cos^{n-1}{\theta}\sin^{2}{\theta}d{\theta}\)
\( \ \ \ =n\int^{\pi/2}_{0}\cos^{n-1}{\theta}(1-\cos^{2}{\theta})d{\theta}\)
\( \ \ \ =n\int^{\pi/2}_{0}\cos^{n-1}{\theta}d{\theta}-n\int^{\pi/2}_{0}\cos^{n+1}{\theta}d{\theta}\)
\( \ \ \ =na_{n-2}-na_{n}\)
整理得
\(\displaystyle a_{n}=\frac{n}{n+1}a_{n-2}\)



計算4(2)
考慮 \(0\leq \theta \leq \pi/2\Rightarrow0\leq \cos{\theta}\leq 1\Rightarrow\cos^{n}{\theta}\) 遞減\(\Rightarrow a_{n}\) 遞減
即 \(\displaystyle \frac{a_{n+2}}{a_{n}}\leq \frac{a_{n+1}}{a_{n}}\leq \frac{a_{n+1}}{a_{n+1}}=1\)
又因 \(\displaystyle \lim\limits_{n\rightarrow \infty}\frac{a_{n+2}}{a_{n}}=1\)
由夾擠定理得 \(\displaystyle \lim\limits_{n\rightarrow \infty}\frac{a_{n+1}}{a_{n}}=1\)

thepiano 發表於 2021-5-9 20:59

計算第 2 題
中山大學雙週一題
[url]http://www.math.nsysu.edu.tw/~problem/2014s/2ans.pdf[/url]
103 臺中女中也考過類似題

計算第 3 題
97 年數學能力競賽嘉義區複賽 第 3 題
連結已失效h ttp://e-tpd.kssh.khc.edu.tw/sys/read_attach.php?id=3824

110.5.10版主補充
97高中數學能力競賽,[url]https://math.pro/db/thread-919-1-1.html[/url]

laylay 發表於 2021-5-9 21:00

填充7.

已知\(n\)為正整數,且方程式\(x^{10}+(nx-1)^{10}=0\)的10個複數根為\(z_k,\overline{z_k}(k=1,2,3,4,5)\),求\(\displaystyle \sum_{k=1}^5 \frac{1}{z_k \overline{z_k}}\)。(以\(n\)表示)
[解答]
令 w=cos18度+isin18度 , nx-1=x*w^(2k+1)  =>  x=1/(n-w^(2k+1)) ,k=0,1,2..9
所求=(n-w)(n-w^19)+(n-w^3)(n-w^17)+(n-w^5)(n-w^15)+(n-w^7)(n-w^13)+(n-w^9)(n-w^11)
       =5n^2+5

czk0622 發表於 2021-5-9 21:15

回復 4# flyinsky218 的帖子

計算證明題2.
在坐標平面上,\(A,B,C\)三點形成直角三角形,其中\(\angle C=90^{\circ}\),\(\overline{AB}=60\),又過\(A\)與\(B\)兩點的中線方程式分別為\(y=x+2021\)與\(y=2x+110\)。試求三角形\(ABC\)的面積。
[解答]
計算2另解
設 \(\overline{BC}=2a\),中點為 \(M_{A} \)、\(\overline{AC}=2b\),中點為 \(M_{B} \)、重心為 \(G\),
\(\displaystyle \tan{M_{A}GB}=\frac{2-1}{1+2*1}=\frac{1}{3}\),\(\displaystyle \sin{AGB}=\frac{1}{\sqrt{10}}\)、\(a^{2}+b^{2}=900\)
由中線定理得
\(\overline{AM_{A}}^{2}=3b^{2}+900\)、\(\overline{BM_{B}}^{2}=3a^{2}+900\)
由 \(\displaystyle \Delta AGB=\frac{1}{3}\Delta ABC\) 得
\(\displaystyle \frac{1}{2}\times \frac{2}{3}\overline{AM_{A}}\times \frac{2}{3}\overline{BM_{A}}\times \sin{AGB}=\frac{1}{3}\times \frac{1}{2}\times (2a)\times(2b)\)
整理得 \(ab=200\),
\(\Delta ABC=\frac{1}{2}\times (2a)\times(2b)=2ab=400\)

satsuki931000 發表於 2021-5-9 21:17

計算1.
五人進行「剪刀、石頭、布」的猜拳,五人同時出拳,若能分出勝負(例如:兩人出剪刀,三人出石頭時,算是分出勝負;但五人都出剪刀時,不算分出勝負),則猜拳停止;若分不出勝負,則繼續猜拳,直到分出勝負為止。試求猜拳次數的期望值。
[解答]
考場當下不知道怎麼回事 以為是要求出留到最後一人為勝利者時的猜拳次數期望值
嫌麻煩就沒算了 回頭來看發現超級送分
不分勝負機率為\(\displaystyle \frac{17}{27}\)
\(\displaystyle E(X)=\frac{10}{27}+\frac{17}{27}[E(X)+1]\)
得\(\displaystyle E(X)=\frac{27}{10}\)

填充6
已知\(\Delta OAB\)內接於拋物線\(y^2=8x\),其中\(O\)為原點,且此內接三角形的垂心恰為拋物線的焦點,求\(\Delta OAB\)的外接圓之圓心坐標。
[解答]
令\(A(2t^2,4t),B(2s^2,4s)\),則過A,B的兩條高的直線方程式分別為
\(\displaystyle y-4t=\frac{-s}{2}x+st^2\)
\(\displaystyle y-4s=\frac{-t}{2}x+ts^2\)
整理可得\(\displaystyle 4=\frac{-1}{2}x-st\)且\(x=2\),得\(st=-5\)
代回去直線方程式得到\(s=-t\),可知\(\displaystyle t=\sqrt{5},s=-\sqrt{5}\)
所以\(\displaystyle A(10,4\sqrt{5}),B(10,-4\sqrt{5})\)
易知所求外心為\((9,0)\)

thepiano 發表於 2021-5-9 21:41

回復 4# flyinsky218 的帖子

計算第 3 題
補一下圖

Superconan 發表於 2021-5-10 01:22

請教多選第 3 題的 (E) 選項

yosong 發表於 2021-5-10 01:38

回復 11# Superconan 的帖子

點\(A(e,1)\)在函數\(f(x)=lnx\)的圖形上,圓\(Q\)(\(Q\)為該圓的圓心)與\(y=f(x)\)的圖形在\(A\)點有共同的切線,且圓\(Q\)又與\(x\)軸相切於\(B\)點。選出正確的選項。
(A)以\(A\)為切點的切線斜率為\(\displaystyle \frac{1}{e}\)
(B)直線\(\overline{AQ}\)的方程式為\(y-1=e(x-e)\)
(C)\(Q\)點落在拋物線\(\displaystyle y=\frac{1}{2}(x-e^2)+\frac{1}{2}\)上
(D)\(Q\)點在\(\overline{AB}\)的中垂線上
(E)\(B\)點坐標為\((\sqrt{e^2+1},0)\)
[解答]
(E)
過A點的切線方程式為y-1=(x-e)/e
則A和y軸交點(y=0代入)為O(0,0)
故OA長=OB長=√e^2+1   故B(√(e^2+1) , 0)或(-√(e^2+1) , 0)
感謝大家指正,答案應該有兩個圓

BambooLotus 發表於 2021-5-10 11:14

多選第三答案應更正為ACD 圓有兩個,希望有去考的考生可以提試題疑慮,剩40分鐘

Superconan 發表於 2021-5-10 13:02

回復 13# BambooLotus 的帖子

請問圓有哪兩個?

czk0622 發表於 2021-5-10 14:02

回復 14# Superconan 的帖子

如圖

thepiano 發表於 2021-5-10 14:17

回復 13# BambooLotus 的帖子

改成 B 點坐標為 (±√(e^2 + 1),0) 才對

ChuCH 發表於 2021-5-10 15:42

回復 8# czk0622 的帖子

請問tan這個是怎麼得來的 謝謝

enlighten 發表於 2021-5-10 15:46

請教第8題

ChuCH 發表於 2021-5-10 16:06

8.
\(ABCDE\)為一正五邊形,令\(\Delta ABE\)為三角形\(ABE\)的面積。
試求:正五邊形\(ABCDE\)的面積與三角形\(ABE\)的面積之比值,即\(\frac{正五邊形的面積}{\Delta ABE}\)之值。
[attach]6009[/attach]

icegoooood 發表於 2021-5-10 16:30

不好意思,小弟尚菜

想求填充2.6與多選2的解法  (複數的部分好菜..)

點了Bugmens老師的連結進去,但沒看到解法

頁: [1] 2 3

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.