Math Pro 數學補給站's Archiver

我真心在追求我的夢想時,
每一天都是繽紛的。
因為我知道每個小時都是實現理想的一部份。

Almighty 發表於 2021-4-17 13:14

110高雄女中

先給關鍵字
1. 行列式               2. 不等式            3. 投影矩陣     4. 極限值      
5. 三次函數切線    6. 旋轉體積        7. 扇形             8. 3直線找面積   
9. 四次函數共線   10. 對戰問題      11. 六位數      12. 根號整

最低錄取分數:65分

cut6997 發表於 2021-4-17 16:05

Almighty老師已補完整版,我就自刪不傷大家眼睛了

godness 發表於 2021-4-17 16:18

印象中應該是這樣
9. y=x^4-20x^2+2x+37

koeagle 發表於 2021-4-17 17:29

想請教2、8、9,謝謝。

tsusy 發表於 2021-4-17 17:52

回復 4# koeagle 的帖子

第 2 題.
對任意實數 \( x, y \),由柯西不等式得
\( (x^{2}+(\sqrt{3})^{2})((\sqrt{3})^{2}+y^{2})\geq(\sqrt{3}x+\sqrt{3}y)^{2}=3(x+y)^{2} \)

將 \( (x,y)=(a,b),(b,c),(c,d),(d,a) \) 分別代入上式,並相乘得

\( \left[(a^{2}+3)(b^{2}+3)(c^{2}+3)(d^{2}+3)\right]^{2}\geq81\left[(a+b)(b+c)(c+d)(d+a)\right]^{2} \)

\( \Rightarrow(a^{2}+3)(b^{2}+3)(c^{2}+3)(d^{2}+3)\geq9\left|(a+b)(b+c)(c+d)(d+a)\right|\geq9(a+b)(b+c)(c+d)(d+a) \)

satsuki931000 發表於 2021-4-17 18:01

回復 4# koeagle 的帖子

8. 硬算,在\(\triangle{ABC}\)中
畫圖假設\(\displaystyle m=\frac{1}{3},m=\frac{4}{5}\)夾角為A
求得\(\displaystyle \tan A=\frac{7}{19}\),\(\displaystyle sinA=\frac{7}{\sqrt{410}}\)

\(\displaystyle m=\frac{4}{5},m=\frac{-1}{4}\)夾角為C
求得\(\displaystyle tanC=\frac{-21}{16}\),\(\displaystyle sinC=\frac{21}{\sqrt{697}}\)
正弦定理求得\(\displaystyle \overline{BC}=\frac{30\sqrt{697}}{\sqrt{410}}\)

又\(\displaystyle sinB=\frac{7}{\sqrt{170}}\)
所以面積為\(\displaystyle \frac{1}{2} \cdot 90 \cdot \frac{30\sqrt{697}}{\sqrt{410}}  \cdot \frac{7}{\sqrt{170}}=945\)

[[i] 本帖最後由 satsuki931000 於 2021-4-17 18:51 編輯 [/i]]

satsuki931000 發表於 2021-4-17 18:15

9.設直線為\(y=mx+n\)
則方程式\(x^4-20x^2+(2-m)x+(37-n)=0\)有\(a,b,c,d\)四實根
且\(a=a,b=a+t,c=a+2t,d=a+3t\)
由四根和為0得\(\displaystyle t=-\frac{2}{3}a\),可知四根為\(\displaystyle a,\frac{1}{3}a,\frac{-1}{3}a,-a\)
再由兩兩乘積為-20求得\(a^2=18\)
取\(\displaystyle d=3\sqrt2,c=\sqrt2,b=-\sqrt2,a=-3\sqrt2\) 之後就求座標

tsusy 發表於 2021-4-17 18:18

回復 6# satsuki931000 的帖子

第 8 題. 用 \( tan \) 之值,配合圖形會比較快

如果有畫圖的畫,會知,在三角形在 \( L_1 \) 上的兩頂點所在的內角皆為銳角

[attach]5859[/attach]

並作 \( L_1 \) 上的高,直接用兩個正切值就可以得到高的長度及面積了

所求面積 \( =\frac{1}{2}\cdot 90\cdot\left(90\cdot\frac{7}{30}\right)=945 \)
(利用斜率及差角公式可求得圖中 \( \tan A = \frac{7}{19}, \tan B = \frac{7}{11} \) )

Almighty 發表於 2021-4-17 18:47

回復 4# koeagle 的帖子

提供第8題的另解

satsuki931000 發表於 2021-4-17 18:51

回復 10# thepiano 的帖子

感謝鋼琴老師糾正筆誤

bugmens 發表於 2021-4-17 19:16

7.
小萱從半徑為6,圓心角為\(\displaystyle \frac{\pi}{3}\)的扇形,金屬材料中剪出一個長方形\(PQRS\),且\(\overline{PQ}\)與\(∠AOB\)的平分線\(\overline{OC}\)平行,若將長方形\(PQRS\)彎曲,使\(\overline{PQ}\)與\(\overline{RS}\)重合焊接成為圓柱的側面,則當圓柱側面的面積最小時,試求此圓柱的體積。(假設此圓柱有上下底面)

四邊形\(ABCD\)是內接於一扇形的正方形,頂點\(A\)、\(D\)分別在扇形的兩半徑上,頂點\(B\)、\(C\)在扇形的弧上,而\(M\)是扇形的弧中點。設扇形的半徑為\(r\),而圓心角\(∠AOD=\theta\)是一銳角,則正方形\(ABCD\)的面積為[u]   [/u]。(以\(r\)與\(\theta\)表示)
(97高中數學能力競賽台北市筆試二試題,[url]https://math.pro/db/thread-919-1-1.html[/url])

3條直線\(L_1,L_2,L_3\),斜率\(\displaystyle m_1=\frac{1}{3},m_2=\frac{4}{5},m_3=-\frac{1}{4}\),且\(L_1\)被\(L_2,L_3\)截出線段90,則圍成\(\Delta\)面積為何?

坐標平面上有三條直線\(L_1\)、\(L_2\)、\(L_3\),其中\(L\)的斜率為\(\displaystyle \frac{1}{4}\),\(L_1\)、\(L_2\)的斜率分別為\(\displaystyle \frac{3}{4}\)、\(\displaystyle -\frac{3}{4}\)。已知\(L\)被\(L_1\)、\(L_2\)所截出的線段長為51,則\(L_1\)、\(L_2\)、\(L_3\)所決定的三角形的面積為[u]   [/u]。
(108松山工農,[url]https://math.pro/db/thread-3145-1-1.html[/url])

12.
令\(a_n\)為\(\sqrt{n}\)最接近的整數,求\(\displaystyle \sum_{n=1}^{2000}a_n\)。

類似題
設\(a_n\)表示與\(\sqrt{n}\)最接近的整數(\(n\)為正整數),試求\(\displaystyle \frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_{2012}}。\)
(建中通訊解題第97題,連結已失效h ttp://web2.ck.tp.edu.tw/~mathweb/index.php?option=com_content&view=article&id=42:2012-02-07-02-50-11&catid=19:2011-11-23-08-30-15&Itemid=37)

cut6997 發表於 2021-4-17 19:33

想請教12題,
如果是取高斯的話是sum k_1^44 (2001-k^2)
可是最接近的該如何處理?

liuandy 發表於 2021-4-17 19:38

請教3, 5題,謝謝

thepiano 發表於 2021-4-17 19:44

回復 13# cut6997 的帖子

第 12 題
1 有 2 個
2 有 4 個
3 有 6 個
4 有 8 個
:
:
44 有 88 個
45 有 20 個

tsusy 發表於 2021-4-17 19:54

回復 14# liuandy 的帖子

第 5 題,也算常見的考古題了
1. 設過原點 \( (0,0) \) 有三條相異直線與 \( f(x)=x^{3}+kx^{2}+1 \) 相切,則實數 \( k \) 值的範圍為 __________。(100楊梅高中、99台中二中、102復興高中)

2. 三次曲線\(y=x^3+ax^2+1\),若通過原點可做出此曲線的三條相異切線,求實數\(a\)的範圍為。(107中科實中國中部)

3. 三次曲線 \( y=x^{3}+ax^{2}+x+1 \),若由原點可作三條相異之切線,試求實數 \( a \) 的範圍。(101中科實中、96台中一中)
瑋岳老師的解答:[url]https://math.pro/db/viewthread.php?tid=1318&page=5#pid5091[/url]

4. \( a\in\mathbb{R} \),過 \( P(a,2) \) 作 \( y=f(x)=x^{3}-3x^{2}+2 \) 的切線,若所作的切線恰有一條,求 \( a \) 的範圍。(97大里高中)

5. 三次曲線 \( y=x^{3}+kx^{2}+x+1 \),若由原點恰可作兩條切線,試求實數 \( k \) 範圍。(102松山家商)

6. 已知函數圖形 \( \Gamma:\,f(x)=x^{3}-x \),而點 \( P(a,0) \) 是圖形外一點,若過 \( P \) 恰可作相異三條的切線,則 \( a \) 的範圍為 \( \underline{\qquad\qquad} \)。(102北門高中)

7. 平面上動點 \( P(a,b) \),已知通過點 P 對函數 \( f(x) = -x^3 + 2x + 3 \) 圖形可做三條切線,找出符合的關係式。(106高雄女中)

cut6997 發表於 2021-4-17 20:03

回復 15# thepiano 的帖子

感謝鋼琴老師,茅塞頓開
n與n+1中共(n+1)^2-n^2-1=2n個數
其中(n+0.5)^2=n^2+n+0.25>n^2+n
因此數量靠近n和n+1的個數對分
1有1+1
2有1+1+2
3有1+2+3
n有1+(n-1)+n=2n

tsusy 發表於 2021-4-17 20:34

回復 14# liuandy 的帖子

第 3 題
依正射影公式可計算 \( (x',y') \)
\(\displaystyle \left(\frac{(x,y)\cdot(a,b)}{a^{2}+b^{2}}\right)(a,b)=\left(\frac{a^{2}x+aby}{a^{2}+b^{2}},\frac{abx+b^{2}y}{a^{2}+b^{2}}\right) \)

因此線性變換 \( T \) 的表示矩陣為 \(\displaystyle \frac{1}{a^{2}+b^{2}}\begin{bmatrix}a^{2} & ab\\
ab & b^{2}
\end{bmatrix} \)

jasonmv6124 發表於 2021-4-17 21:52

請問7.10

satsuki931000 發表於 2021-4-17 22:04

10.甲隊獲勝有C(6,0)+C(7,1)+...+C(12,6)=C(13,6)
同理乙也是C(13,6),故所求為2*C(13,6)

CyberCat 發表於 2021-4-17 22:08

回復 19# jasonmv6124 的帖子

10.
H的8取6*2

想法如下
視為有其中一隊獲勝第七場就停止比賽
設兩隊為A、B
不失一般性設A隊獲勝記為✔ 輸了記為✖
若A隊最終獲勝 就會出現第七個✔
比賽紀錄:☐✔☐✔☐✔☐✔☐✔☐✔☐✔
那麼這7個☐最多出現6次B
反之亦然

頁: [1] 2 3

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.