96台南女中
10.三球面\(S_1\)、\(S_2\)、\(S_3\)兩兩外切,半徑分別為4、9、16,已知相異二平面\(E_1\)、\(E_2\)皆為三球面之公切面,設兩平面\(E_1\)、\(E_2\)之銳夾角為\(\theta\),則\(cos \theta\)之值為[u] [/u]。
11.
有一點光源從拋物線\(y=2x^2\)上的點\(P\)發射一條雷射光,射向焦點\(F\),經對稱軸反射後,經過拋物線上的另一點\(Q\),設\(\overline{PF}=a\),\(\overline{QF}=b\),則\(4a+b\)的最小值為[u] [/u]。
12.
設\(\displaystyle \omega=cos\frac{2\pi}{n}+isin\frac{2\pi}{n}(n \in N)\),設\(\displaystyle A_n=(\frac{5}{4}-\frac{\omega^2+1}{2\omega})
(\frac{5}{4}-\frac{\omega^4+1}{2\omega^2})(\frac{5}{4}-\frac{\omega^6+1}{2\omega^3})\ldots(\frac{5}{4}-\frac{\omega^{2n-2}+1}{2\omega^{n-1}})\),則\(\displaystyle \lim_{n\to \infty}A_n=\)[u] [/u]。
答案分別是
\(\frac{67}{522}\) , \(\frac{9}{8}\),\(4\)
還請各位幫忙
回覆第二題
第二題算出來是 5/8,因為欲使4a+b最小,必須讓a,b越小越好知F(0,1/8) 考慮P=Q=(0,0) PF距離最短 又經過P從原點出發打到F反射後(對稱軸x=0)
再打到原點 得a=b=1/8 故所求=5/8
Note: PF距離最短 則P是原點 (令P(a,2a^2) 算出PF距離後 再微分,得a=0時有min)
請板上老師指教
回覆第三題
第三題 小弟做出來的答案差一個負號,不知道是哪裡少算一個負號請老師參考
回復 3# anyway13 的帖子
問題出在 \(\frac{1}{\omega^{\frac{n(n-1)}{2}}} \) 這邊\(\omega^{\frac{n(n-1)}{2}}=cos(n-1)\pi +isin(n-1)\pi \)
當\(n\)為奇數時,整個為1
當\(n\)為偶數時,整個為-1
因此所求極限
\((\frac{-1}{4})^{n-1}(2^n-1)(2^n)(1-(\frac{1}{2})^{n})(\frac{1}{\omega^{\frac{n(n-1)}{2}}}) \to 4 \)
感謝您的解答
回復 4# satsuki931000 的帖子
謝謝satsuki931000老師解惑回復 1# satsuki931000 的帖子
第 1 題三球心連線所成三角形之三邊長分別為 13、20、25
三球心到 E_1 的投影點所成三角形之三邊長分別為 2√(4 * 9)、2√(4 * 16)、2√(9 * 16)
則 cos(θ/2) 為後者面積與前者面積之比值
110.3.6補充圖形
96台南女中
最近南女要獨招 , 報名網站上有提供以前的題目 , 但有些找不到解法 , 希望這裡的老師能幫幫忙 , 附上題目和解答 , 想請教9,12,16回復 1# ibvtys 的帖子
第9題架座標,求歪斜線距離 (提示:O1A1B1是正三角形)
第16題
令x/6=θ
原式改寫成 3cos2θ-2sin3θ-6sinθ (再用倍角公式跟三倍角公式換成只有sinθ就可以處理了)
回復 2# CyberCat 的帖子
感謝~理解了 12.設\(\displaystyle \omega=cos\frac{2\pi}{n}+isin\frac{2\pi}{n}(n \in N)\),設\(\displaystyle A_n=(\frac{5}{4}-\frac{\omega^2+1}{2\omega})
(\frac{5}{4}-\frac{\omega^4+1}{2\omega^2})(\frac{5}{4}-\frac{\omega^6+1}{2\omega^3})\ldots(\frac{5}{4}-\frac{\omega^{2n-2}+1}{2\omega^{n-1}})\),則\(\displaystyle \lim_{n\to \infty}A_n=\)[u] [/u]。
等待好方法,自己也不知道有沒有問題的解法
回復 1# ibvtys 的帖子
第12題考慮 \(\displaystyle (\frac{1}{2}-\omega^{k})(\frac{1}{2}-\omega^{n-k})=(\frac{1}{2})^{2}-(\omega^{k}+\omega^{n-k})\cdot\frac{1}{2}+1=\frac{5}{4}-(\frac{\omega^{k}}{2}+\frac{1}{2\omega^{k}})=\frac{5}{4}-\frac{\omega^{2k}+1}{2\omega^{k}}\)
因為 \(\displaystyle 1+\frac{1}{2}+\frac{1}{2^{2}}+......+\frac{1}{2^{n-1}}=(\frac{1}{2}-\omega)(\frac{1}{2}-\omega^{2})......(\frac{1}{2}-\omega^{n-1})\)
\(\displaystyle =(\frac{1}{2}-\omega^{n-1})(\frac{1}{2}-\omega^{n-2})...(\frac{1}{2}-\omega)\)
將此式連乘兩次得(等式後面前後對調上下相乘)
所求 \(\displaystyle A_{n}=(1+\frac{1}{2}+\frac{1}{2^{2}}+......+\frac{1}{2^{n-1}})^{2}\)
即 \(\displaystyle \lim\limits_{n\rightarrow\infty}A_{n}=(\frac{1}{1-\frac{1}{2}})^{2}=4\)
回復 5# czk0622 的帖子
對這類型的題目一直不太會~感謝幫助頁:
[1]