Math Pro 數學補給站's Archiver

快樂的秘訣,不是做你所喜歡的事,
而是喜歡你所做的事。

satsuki931000 發表於 2020-11-3 21:35

一題國中幾何證明

如右圖:直線\(AD\)是\(∠BAC\)的平分線,\(I\)在直線\(AD\)上,且\(∠BIC=90^{\circ}+\frac{1}{2}∠BAC\)。
試證:\(I\)是\(\Delta ABC\)的內心。

麻煩各位前輩老師指點 謝謝
得到BAI+ABI+ACI=90度的結論後就走不下去了
[attach]5678[/attach]

thepiano 發表於 2020-11-3 22:42

回復 1# satsuki931000 的帖子

用反證法
假設 I 不是內心,O 才是內心
O 是 AD 上異於 I 的一點,角 BOC 必大於或小於角 BIC
與兩者都是 90 度 + (1/2)角 BAC 矛盾
故 I 是內心

[[i] 本帖最後由 thepiano 於 2020-11-3 22:44 編輯 [/i]]

satsuki931000 發表於 2020-11-4 22:34

回復 2# thepiano 的帖子

謝謝鋼琴老師指點 證出來了

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.