橢圓內三角形面積
點\(M(2,1)\)為橢圓\(C\)上的一點,橢圓的兩個焦點其坐標分別為\((-\sqrt{6},0)\)和\((\sqrt{6},0)\)。\(O\)為原點,直線\(L\)平行於\(OM\)並交橢圓\(C\)於不同的兩點\(A,B\)。\(\Delta OAB\)面積的最大值。請教最後三角形oab的面積為何是1/2*m*(x1-x2)?
回復 1# Exponential 的帖子
引用題目的符號, 看起來是以原點跟線上兩點形成的三角形面積公式,感覺上應該有更好的看法。[attach]5292[/attach]回覆年獸
謝謝 我想說我怎麼算答案都是2,為何他的答案是4,原來他最後一步錯了。你就做出半徑為 \( a \) 的圓,就是 \( x^2+y^2=8 \)。
然後問題就變成在這圓上找兩點A,B使得三角形OAB面積最大,就是在OA跟OB垂直的時候,
再伸縮回橢圓上,所以最大面積就是 \(\displaystyle \frac{1}{2} \times 8 \times \frac{\sqrt2}{2\sqrt2}=2 \)
回復 1# Exponential 的帖子
令 \( C \) 為 \( \overline{AB} \) 和 \( y \) 軸的交點,則有面積 \( \Delta OAB = \Delta OAC + \Delta OBC \)
以 \( \overline{OC} \) 為底,計算上式右邊的兩三角形面積
即可得 \( \Delta OAB = \frac 12 |m||x_1-x_2| \)
[[i] 本帖最後由 tsusy 於 2019-11-1 21:39 編輯 [/i]]
頁:
[1]