a_n不等式數學家如何推得的?
在坐標平面上,\(x\)與\(y\)坐標都是整數的點稱為格子點。今落在以原點為圓心,正整數\(n\)為半徑的圓內或圓上的格子點數為\(a_n\),數學家已證明數列\(\langle\;a_n\rangle\;\)會滿足不等式\(\pi(n^2-3n)\le a_n \le \pi(n^2+3n)\),試利用此不等式求極限值\(\displaystyle \lim_{n \to \infty}\frac{a_n}{n^2}\)。回復 1# larson 的帖子
把格子點看成單位正方形,\({{a}_{n}}\)就是所有綠色正方形的面積紅色的圓是半徑為正整數\(n\)的圓
紫色的圓是半徑\(n+\frac{\sqrt{2}}{2}\)的圓
藍色的圓是半徑\(n-\frac{\sqrt{2}}{2}\)的圓
\(\pi {{\left( n-\frac{\sqrt{2}}{2} \right)}^{2}}\le {{a}_{n}}\le \pi {{\left( n+\frac{\sqrt{2}}{2} \right)}^{2}}\)
取值範圍大一些,就是\(\pi \left( {{n}^{2}}-3n \right)\le {{a}_{n}}\le \pi \left( {{n}^{2}}+3n \right)\)
回復 2# thepiano 的帖子
感謝你!頁:
[1]