107政大附中代理
2018.06.30 筆試 6.\(x,y \in C\),試解聯立方程式\( \cases{x+y=5 \cr x^4+y^4=97} \)。
(99高雄市高中聯招,[url]https://math.pro/db/viewthread.php?tid=975&page=3#pid3447[/url])
7.
若\(L_1\)與\(L_2\)為拋物線上\(\Gamma\)上兩條互相垂直的切線,其交點為\(P\)。試證明:\(P\)點一定落再拋物線\(\Gamma\)的準線上。
[url]https://math.pro/db/viewthread.php?tid=1789&page=1#pid9519[/url]
回復 1# Superconan 的帖子
第三題應該是:\(tanA+tanB+tanC=tanA \cdot tanB \cdot tanC\) 4.
\(I\)為等腰三角形\(ABC\)的內心\(\overline{AB}=\overline{AC}\),\(\overline{ID}\bot \overline{BC}\)、\(\overline{IE}\bot \overline{AC}\)、\(\overline{IF}\bot \overline{AB}\)。若\(\Delta AFE\)的面積等於\(\Delta FBD\)與\(\Delta EDC\)的面積和,求\(\displaystyle \frac{\overline{AF}}{\overline{BF}}=\)?
想請教第四題,謝謝!
回復 4# beaglewu 的帖子
第 4 題\(\begin{align}
& \overline{AF}=x,\overline{BF}=1 \\
& \Delta AFG=\Delta FBD=a \\
& \frac{\Delta AFG}{\Delta DFG}=\frac{\overline{AG}}{\overline{DG}}=\frac{\overline{AF}}{\overline{BF}}=x \\
& \Delta DFG=\frac{a}{x} \\
& \frac{\Delta AFD}{\Delta BFD}=\frac{\overline{AF}}{\overline{BF}} \\
& \frac{a+\frac{a}{x}}{a}=\frac{x}{1} \\
& 1+\frac{1}{x}=x \\
& \frac{\overline{AF}}{\overline{BF}}\text{=}x=\frac{1+\sqrt{5}}{2} \\
\end{align}\)
回復 5# thepiano 的帖子
謝謝 thepiano老師!頁:
[1]