Math Pro 數學補給站's Archiver

你要為自己
創造一個良性循環的機會。

eyeready 發表於 2017-6-23 10:56

請教兩題

第一題 不等式\(\displaystyle  {\rm{1 + }}\lg (3x^2  + x - 2) - \lg (x + 1) < |x - 2| \)

ANS:\(\displaystyle (\frac{2}{3},1) \cup (4,\infty ) \)

第二題
函數\(f\)定義在整數集上,且滿足
\(
\begin{array}{l}
\displaystyle  f(n) = \left\{ \begin{array}{l}
\displaystyle  n - 2,n \ge 2009 \\
\displaystyle  f[f(n + 3)],n < 2009 \\
\end{array} \right. \\
\end{array}
\)
則\(\displaystyle f(9)=?\)

ANS:2007

weiye 發表於 2017-6-23 11:22

回復 1# eyeready 的帖子

第一題:

由 \(\log\) 的定義有效,可知 「\(3x^2+x-2>0\) 且 \(x+1>0\)」,得 \(\displaystyle x>\frac{2}{3}\)

再來處理題目,

\(1+\log\left(3x^2+x-2\right)-\log\left(x+1\right)<\left|x-2\right|\)

\(\displaystyle \Rightarrow \log\frac{3x^2+x-2}{x+1}<\left|x-2\right|-1\)

\(\displaystyle \Rightarrow \log\left(3x-2\right)<\left|x-2\right|-1\)


當 \(x\leq2\) 時, \(y=\log\left(3x-2\right)\) 與 \(y=1-x\) 交於 \(\left(1,0\right)\)

當 \(x\geq2\) 時, \(y=\log\left(3x-2\right)\) 與 \(y=x-3\) 交於 \(\left(4,1\right)\)

可以畫出如下圖

[attach]4197[/attach]

可得解為 \(\displaystyle \frac{2}{3}<x<1\) 或 \(x>4\)

weiye 發表於 2017-6-23 11:41

回復 1# eyeready 的帖子

第二題:

為了方便起見,定義 \(f^1\left(x\right)=f\left(x\right)\),\(f^n\left(x\right)=f\left(f^{n-1}\left(x\right)\right), \forall n=2,3,\cdots\)

則 \(f\left(2009\right) = 2007\) 且
  \(f\left(f\left(2009\right)\right) = f\left(2007\right) = f\left(f\left(2010\right)\right) = f\left(2008\right) = f\left(f\left(2011\right)\right) = f\left(2009\right)\)

合併以上二者,可得 \(f^n\left(2009\right) = f\left(2009\right)=2007, \forall n\in\mathbb{N}\)

\(f\left(9\right) = f\left(f\left(12\right)\right)=f\left(f\left(f\left(15\right)\right)\right)=\cdots= f^{667}\left(2010\right)\)

 \( = f^{666}\left(2010-2\right) = f^{666}\left(2008\right) = f^{667}\left(2011\right) =f^{666}\left(2009\right) = 2007\)

註:寫完回首,發現結論是 \(f\left(1\right)=f\left(2\right)=f\left(3\right)=\cdots=f(2007)=f(2008)=f(2009)=2007\)

eyeready 發表於 2017-6-23 12:00

回復 3# weiye 的帖子

謝謝學長的幫忙!
PS:祝學長有個愉快的假期^_^

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.