Math Pro 數學補給站's Archiver

能忍耐的人,才能達到他所希望達到的目的。

larson 發表於 2017-5-23 16:55

代課老師教甄口試問題

若函數f(x)為可微分函數,請問 f '(x) 是否一定為連續函數?

thepiano 發表於 2017-5-23 20:11

回復 1# larson 的帖子

不一定,反例如下:

\(f\left( x \right)=\left\{ \begin{align}
  & {{x}^{2}}\cos \frac{1}{x}\ ,\ x\ne 0 \\
& 0\ ,\quad \quad \quad x=0 \\
\end{align} \right.\)

在\(x\to 0\)時,\(f'\left( x \right)=2x\cos \frac{1}{x}+\sin \frac{1}{x}\)的極限不存在,即\(f'\left( x \right)\)在\(x=0\)處不連續

laylay 發表於 2017-5-24 10:38

回復 2# thepiano 的帖子

但是如此f(x)在X=0可微分嗎?
因為題目說函數f(x)為可微分函數,謝謝.
即是否只需觀察在可微分的區間是否有連續呢?
個人覺得題目改成函數在可微分的區間,是否其微分函數都是連續函數較為明確

[[i] 本帖最後由 laylay 於 2017-5-24 11:33 編輯 [/i]]

thepiano 發表於 2017-5-24 11:52

[quote]原帖由 [i]laylay[/i] 於 2017-5-24 10:38 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=17362&ptid=2772][img]https://math.pro/db/images/common/back.gif[/img][/url]
但是如此f(x)在X=0可微分嗎?
[/quote]
可微

laylay 發表於 2017-5-24 12:50

回復 4# thepiano 的帖子

我知道了f`(0)=0,謝謝
令g(x)=x^2,g`(0)=0,而f(x)的絕對值<=g(x),可知道了f`(0)=0
問題是f(x) 在x=0處有連續,實在有點神奇

[[i] 本帖最後由 laylay 於 2017-5-24 13:03 編輯 [/i]]

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.