Math Pro 數學補給站's Archiver

不是因為困難所以我們才不敢,
而是因為我們不敢所以才困難。

艾瑞卡 發表於 2017-1-1 16:52

二元一次聯立方程組

求二元一次聯立方程組較快的解法…除了克拉瑪公式之外的解法(我用克拉瑪寫了一整面的計算紙~真汗顏[attach]3746[/attach])

thepiano 發表於 2017-1-1 18:51

回復 1# 艾瑞卡 的帖子

填充題嘛,最快就是代數字

eyeready 發表於 2017-1-1 23:30

回復 1# 艾瑞卡 的帖子

參考看看

eyeready 發表於 2017-1-1 23:45

回復 1# 艾瑞卡 的帖子

可用變數變換
\(\displaystyle

\begin{array}{l}
\left\{ \begin{array}{l}
a_1 x + b_1 (2y) = (5 - 3x)c_1  \\
a_2 x + b_2 (2y) = (5 - 3x)c_2  \\
\end{array} \right. \\
\left\{ \begin{array}{l}
\displaystyle 2a_1 (\frac{x}{2}) + 3b_1 (\frac{2}{3}y) =- (-5 + 3x)c_1  \\
\displaystyle 2a_2 (\frac{x}{2}) + 3b_2 (\frac{2}{3}y) = -(-5 + 3x)c_2  \\
\end{array} \right. \\
\left\{ \begin{array}{l}
\displaystyle 2a_1 (\frac{x}{{2(-5 + 3x)}}) + 3b_1 (\frac{2}{{3(-5 + 3x)}}y) = -c_1  \\
\displaystyle 2a_2 (\frac{x}{{2(-5 + 3x)}}) + 3b_2 (\frac{2}{{3(-5 + 3x)}}y) = -c_2  \\
\end{array} \right. \\
\displaystyle \frac{x}{{2(-5 + 3x)}} = 1 \to x = 2 \\
\displaystyle \frac{2}{{3(-5 + 3x)}}y{\rm{ = }} - {\rm{2}} \to y =-3
\end{array}

\)

[[i] 本帖最後由 eyeready 於 2017-1-10 11:32 PM 編輯 [/i]]

頁: [1]

論壇程式使用 Discuz! Archiver 6.1.0  © 2001-2007 Comsenz Inc.