請教兩題三角函數
題目如附件,謝謝!1.
\(\Delta ABC\)中,\(\overline{AB}=5\),\(\overline{AC}=2\),\(\overline{BC}=x(3<x<7)\),\(∠ABC=\theta\),求\(cos \theta\)最小值?
答案:\(\displaystyle \frac{\sqrt{21}}{5}\)
2.
設\(x^3-3x+1=(x-2cos\alpha)(x-2cos\beta)(x-2cos\gamma)\),\(0<\alpha<\beta<\gamma<180^{\circ}\),求\(cos(\alpha-\gamma)=\)?
答案:\(\displaystyle -\frac{1}{2}\)
回復 1# thankyou 的帖子
第1題由餘弦定理
\(\cos \theta =\frac{{{x}^{2}}+21}{10x},3<x<7\)
……
第2題
令\(x=2\cos \theta \)
\(\begin{align}
& {{x}^{3}}-3x+1=0 \\
& 2\left( 4{{\cos }^{3}}\theta -3\cos \theta \right)=-1 \\
& \cos 3\theta =-\frac{1}{2} \\
& \theta =\frac{2}{9}\pi ,\frac{4}{9}\pi ,\frac{8}{9}\pi \\
& \alpha =\frac{2}{9}\pi ,\beta =\frac{4}{9}\pi ,\gamma =\frac{8}{9}\pi \\
& ...... \\
\end{align}\)
回復 2# thepiano 的帖子
感謝thepiano老師的解答,我明白了!頁:
[1]