方程式無虛根
設\(n\)是自然數,試證:\( \displaystyle \frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x-3}+\ldots+\frac{1}{x-n}=0 \)無虛根。回復 1# larson 的帖子
\(\begin{align}& \frac{1}{x-1}+\frac{1}{x-2}+\frac{1}{x-3}+\cdots +\frac{1}{x-n}=0 \\
& \sum\limits_{k=1}^{n}{\frac{\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\cdots \left( x-n \right)}{x-k}=0} \\
\end{align}\)
由勘根定理,此方程式恰有\(n-1\)個實根,分別位於以下區間
\(\left( 1,2 \right),\left( 2,3 \right),\left( 3,4 \right),\cdots ,\left( n-1,n \right)\) 或是利用微分=0的位置判斷也可以 一個構想:
虛數 Z 與 1/Z ,兩者的的虛部必異號 (一正一負)。
因此,當 x 為虛數,左式中,各分式的虛部皆同正或同負(因為分母的虛部皆相同),故其和必 ≠ 0,即原方程式無虛根。
依此,原式可推廣為: 各分子為同號的實數(彼此不必相等),分母的 1, 2 ... 部分可為任意實數,結論仍成立。 謝謝你們的回覆
頁:
[1]