Math Pro 數學補給站's Archiver

不是井裡沒有水,而是我們挖的不夠深;
不是成功來的慢,而是我們放棄的太快。

whzzthr 發表於 2015-6-29 22:12

求救一題三角題目

1過程都懂,但最後一行由題義得a,b,c,之長度,如何得知
2有更快的方法
謝謝!!

tsusy 發表於 2015-6-29 22:34

回復 1# whzzthr 的帖子

倒數第二行貌似也有問題,\( c > \sqrt{3} b \)

\( a^2 = b^2 + bc \color{red}{>} b^2 + \sqrt{3} b^2 \) (原圖不等式寫反了,這樣會推不出 \( a< \sqrt{3} b \) )

實際上 \( a<\sqrt{3}b \) 是有問題的式子,反例:\( (a,b,c) = (45,25,56) \)

\( \sqrt{3}b \approx 43.3 < a \)

另證.

(1) \( \angle A=2\angle B\Rightarrow a^{2}=b(b+c) \)
說明:略,或見原圖

(2) 當周長最小時,\( \gcd(b,c)=1 \)。
若不然,取質數 \( p \),滿足 \( p\mid\gcd(b,c) \),則 \( p\mid b\Rightarrow p\mid a^{2} \)。

因此得 \( \frac{a}{p},\frac{b}{p},\frac{c}{p} \)  為另一組更小的周長,而得矛盾,故 \( \gcd(b,c)=1 \)

(3) 當周長最小時,\( b, b+c \) 皆為完全平方數。
承 (2) 有 \( \gcd(b,b+c)=\gcd(b,c)=1 \),故 \( b,b+c \) 也互質。

又 \( b(b+c)=a^{2} \) 為一完全平方數,故 \( b, b+c \)  亦為完全平方數。

(4) 令 \( b=x^{2} \), \( b+c=y^{2} \),則 \( (a,b,c)=(xy,x^{2},y^{2}-x^{2}) \)。

(5) \( c<a+b \) (三角不等式) \( \Rightarrow y<2x \)

(6) \( c>2b , y>\sqrt{3}x \),  周長 \( =xy+x^{2}+y^{2}-x^{2}>(3+\sqrt{3})x^{2} \)。

承 (1) 得 \( a^{2}=b^{2}+bc \)

由餘弦定理有 \( c^{2}>a^{2}+b^{2}=b^{2}+bc+b^{2}\Rightarrow c^{2}-bc-2b^{2}>0\Rightarrow c<-b \) 或 \( c>2b \),故 \( c>2b \)。

(7) 以 (5)(6)易檢查 \( x=1,2,3 \) 時,\( a,b,c \) 無正整數解,\( x=4 \) 時,有唯一解 \( (a,b,c)=(28,16,33) \),且周長為 77。

當 \( x\geq5 \)  時,由 (6) 周長 \( >(3+\sqrt{3})\cdot5^{2}\approx118.3 \)

故周長最小為 77

大致上是如此,細節幫忙看一下有無筆誤

[[i] 本帖最後由 tsusy 於 2015-6-29 11:19 PM 編輯 [/i]]

whzzthr 發表於 2015-6-30 20:55

完全無誤   "強"

因為這不是人可以想出來的
所以可以提幾個問題嗎
1.在(5)中c<a+b 如何推得y<2x
2.在(6)中 為什麼c>2b

(p.s.b=16 我算出來22.62<a<27.71  我就覺得它寫錯了)

其他都懂了
謝謝老師

tsusy 發表於 2015-6-30 21:01

回復 3# whzzthr 的帖子

(5)(6) 都是同樣的手法,
先說 (6) 中 \( c^2- bc -2b^2 < 0 \Leftrightarrow (c-2b)(c+b) >0 \)

故 \( c>2b \) 或 \( c< -b \),後者不合 (a,b,c 是邊長,只會正)

(5),把 a,b,c 用 x,y 代換後,會得到 x,y 的二次不等式

\( y^2-x^2 < xy + x^2 \Leftrightarrow y^2 -xy -2xy <0 \Leftrightarrow (y-2x)(y+x) < 0\)

故 \( -x<y<2x \)

whzzthr 發表於 2015-7-3 00:05

回復 4# tsusy 的帖子

清楚了解了

謝謝寸斯老師

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.