104高雄中學
題目是拼湊出來的應該會有點失準 希望有考的網友 可以指正
印象中有共16題(含證明題一題,其餘計算題全部都要詳細過程) 有些忘了..
回復 1# 瓜農自足 的帖子
\( f(x) = x^2 +bx +c \),\( f(f(x)) ? =0 ? \) 恰有三實根看來有點怪,如果 b,c 皆實數,\( f(f(x)) \) 是實係數四次多項式,虛根共軛成雙,不可能恰三實根
回復 2# tsusy 的帖子
抱歉字太醜 那是6 XDD 阿 是\(f(f(x))=0\)恰三個相異實根再補正一下某題 限制應該是\(xz+yz=10\)才對
回復 2# tsusy 的帖子
其中兩實根重根回復 1# 瓜農自足 的帖子
辛苦了,還記得這麼多題目。其中橢圓過焦點那一題(要求AB線段),
假設AB直線與長軸銳夾角為t,線段長AF1=L,線段長BF1=M,
則可設 X(A)=7+L*cos(t),Y(A)=L*sin(t)
X(B)=7-M*cos(t),Y(B)=-M*sin(t)
再由焦半徑AF1=a-(c/a)*X(A)、BF1=a-(c/a)*X(B),
將L與M用cos(t)表示,
最後再由三角形面積得到的算式:Y(A)-Y(B)=32/7
解得 sin(t)=2/7,
因此線段AB長度為 L+M=16
不知有沒有其他較快的算法,
這題如果有人考試中有算出來,
那麼我會非常佩服他。
回復 1# 瓜農自足 的帖子
共15題 一題6% 最後一題10% 補上缺的幾題 大家一起來討論◎ 圓O 完全落在 y≧x^4 區域中 求此圓的半徑最大值
◎ 已知∆ABC內有一點P ∠ABC為直角、 AB=1、BC=根號三 若 PA單位向量+PB單位向量+PC單位向量 = 0 求PA : PB : PC
◎ L1與L2 為歪斜 在L1上找三個點A、B、C,其中AB:BC=2:1,且A、B、C 各對L1求距離分別是
根號33 、3 、2根號6 ,求d(L1,L2)=?
◎ 還有一題是 有一個被旋轉後的雙曲線 問中心點 還是貫軸之類的? 我有點不確定了 希望有印象的大家幫忙補上
另外正方形面積那題 卡了好久 沒能解出來 腦海裡記的座標是 (0,12) (8,0) (5,10) (-4,7) 但也不確定對不對 有錯請指正 也很想知道這題的解法
關於f(f(x))那題 確實是寫恰三個相異實根 當下也懷疑了一下題目 才想到是重根的情況 但還是覺得敘述上 說不上的一種不自在 是我多慮了? 還是題目真的沒問題?
想多心的問一下 以四次實係數為前題 在出題的語句敘述上 若只有寫三個相異實根就可以是暗示說 四實根中 恰有一組重根嗎? (這問題是我多想的 可能有點離題 但因為很好奇 所以提問一下)
回復 5# farmer 的帖子
橢圓這題可以走海龍公式。令 \( d = \overline{AF_1}, e = \overline{BF_1}, f = \overline{AB} = d + e \)
首先由 \( \angle AF_1F_2 + \angle BF_1F_2 = 180^\circ \) 及餘弦定理可得 \( \frac{d+e}{de} = \frac{9}{16} \Rightarrow de = \frac{16}{9}f\)
由海龍公式有 \( 32 = \triangle ABF_2 = \sqrt{18\cdot(18-d-e)de} = \sqrt{32(18-f)f} \)
平方可解得 \( f = 16 \) 或 2 (不合)
回復 6# CyberCat 的帖子
正方形面積,見下圖[attach]2826[/attach]
JH 為正方形對角線,故 \( \angle AJE = 45^\circ = \angle BHF \)
故 E, F 分別為半圓 AED, BFC 之中點(也在 AD, BC 中垂線上)
計算可得 \( E(\frac{1}{2},\frac{15}{2}) \), \( F(\frac{9}{2},\frac{11}{2}) \) (使用 1樓數據)
故對角線的方程式為 \( x+2y=\frac{31}{2} \)
與兩圓方程式分別解聯立可得正方形對角線上的一組頂點 \( J(-\frac{51}{10},\frac{103}{10}), H(\frac{25}{2},\frac{3}{2}) \)
正方形面積 \( \frac12 \overline{JH}^2 = \frac{968}{5} \) [quote]原帖由 [i]tsusy[/i] 於 2015-5-4 08:54 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=13183&ptid=2239][img]https://math.pro/db/images/common/back.gif[/img][/url]
橢圓這題可以走海龍公式。
令 \( d = \overline{AF_1}, e = \overline{BF_1}, f = \overline{AB} = d + e \)
首先由 \( \angle AF_1F_2 + \angle BF_1F_2 = 180^\circ \) 及餘弦定理可得 ... [/quote]
好解法。
不過在考場中是需要取捨的,要是我會至少捨棄這一題。
(事實上可以捨棄的題數是很多的,有限的時間內答自己有把握的題目就好了)
正方形那一題我會想要假設兩條平行線的斜率為m,
另兩條平行線的斜率為 -1/m ,
利用平行線間的距離,讓他們相等來解m。
回復 6# CyberCat 的帖子
f(f(x))=0那一題應該是這樣
回復 10# leo790124 的帖子
很漂亮的解法,最後應是 c < 6,用這個來判斷 (11 + √13)/2 不合回復 11# thepiano 的帖子
謝謝鋼琴老師指正!!!!!回復 6# CyberCat 的帖子
想問歪斜這題怎麼處理?回復 13# 瓜農自足 的帖子
歪線那題 忘了在哪份考古題做過類似題了,為了方便,先做一個轉換,空間中任意點沿著 \( L_2 \) 的方向移動時,點和直線 \( L_2 \) 的距離保持不變。
將 \( A, C \) 沿著 \( L_2 \) 的方向移動至 \( A', C' \) 使得 \( \vec{BA'}, \vec{BC'} \) 和 \( L_2 \) 的方向向量垂直。
移動後 \( A', B, C' \) 的點仍共線,且 \( \overline{A'B}:\overline{BC'} = 2:1 \),保持原比例。
同樣的,可以移動 \( L_1 \) 上的每個點,使得移動後所得 \( L' \) 過 B,其方向與 \( L_2 \) 方向垂直,且各點至 \( L_2 \) 的距離仍不變。
坐標化,以 \( B \) 為原點,\( \vec{BC} \) 方向為正 x 軸,\( L_2 \) 方向為 z 軸。
令 \( A'(-2x,0,0), B(0,0,0), C(x,0,0) \), \( L_2 :\begin{cases}
x= & a\\
y= & d
\end{cases} \),其中 \( x>0 \)
計算距離得 \( \begin{cases}
(a+2x)^{2}+d^{2} & =33\\
a^{2}+d^{2} & =9\\
(a-x)^{2}+d^{2} & =24
\end{cases} \)
\( \Rightarrow\begin{cases}
4ax+4x^{2} & =24\\
-2ax+x^{2} & =15
\end{cases}\Rightarrow6x^{2}=54\Rightarrow x=\pm3 \)
\( x =3 \Rightarrow a=-1 \Rightarrow d^2 =8 \)
所求歪斜距離 \( d(L_1,L_2) = d(L',L_2) = \sqrt{8} = 2\sqrt{2} \)
回復 1# 瓜農自足 的帖子
由網友提供的資訊簡單打成檔案
112.5.8補充
10.
求\(\displaystyle \lim_{n\to \infty}\left(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\ldots+\frac{n}{n^2+n^2}\right)\)的值。
我的教甄準備之路 黎曼和和夾擠定理,[url]https://math.pro/db/viewthread.php?tid=661&page=3#pid23615[/url]
回復 15# fortheone 的帖子
那個14題顯然有錯,y=x^4會不會是 y= - x^4+k之類的?
回復 16# farmer 的帖子
嗯第14題需要記得題目的人來完整一下!
回復 17# fortheone 的帖子
圓心固定在正\(y\)軸上且完全落在\(y>=x^4\) 之最大圓半徑這樣有辦法做嗎?(小弟還是不會@@")
如果又有限制與圓相切的話呢? 請問一下各位大大,有20個格子,黑色不相鄰這題跟費氏數列有關嗎?
小弟從一個格子兩個格子開始推,推到第四個就猜是費氏數列,但沒有推完,
不知道有沒有更快的處理方法,請各位大大給予指正!感謝
回復 19# cathy80609 的帖子
是費氏數列沒錯,才20個,又不是200個,就推吧:)頁:
[1]
2