2014TRML
這次只有LibreOffice檔,沒有MS Office Word檔。2019TRML討論文章[url]https://math.pro/db/thread-3196-1-1.html[/url]
2018TRML討論文章[url]https://math.pro/db/thread-3010-1-1.html[/url]
2017TRML討論文章[url]https://math.pro/db/thread-2854-1-1.html[/url]
2016TRML討論文章[url]https://math.pro/db/thread-2591-1-1.html[/url]
2015TRML討論文章[url]https://math.pro/db/thread-2339-1-1.html[/url]
2014TRML討論文章[url]https://math.pro/db/thread-2028-1-1.html[/url]
2013TRML討論文章[url]https://math.pro/db/thread-1733-1-1.html[/url]
2012TRML討論文章[url]https://math.pro/db/thread-1486-1-9.html[/url]
2011TRML討論文章[url]https://math.pro/db/thread-1247-1-5.html[/url]
2010TRML討論文章[url]https://math.pro/db/thread-1075-1-3.html[/url]
2009TRML討論文章[url]https://math.pro/db/thread-1167-1-1.html[/url]
2007TRML討論文章[url]https://math.pro/db/thread-1483-1-14.html[/url]
2000TRML討論文章[url]https://math.pro/db/thread-1967-1-1.html[/url]
TRML1999-2007
[url]http://sites.chhs.hcc.edu.tw/shu-xue-tian-de/li-jie-shi-ti-zhuan-qu/tai-wan-qu-gao-zhong-shu-xue-jing-sai-trml-li-jie-shi-ti-1999-2007[/url]
寸絲部落格也有題目和詳解
[url]http://tsusy.wordpress.com/category/%E6%95%B8%E5%AD%B8/trml/[/url]
103.11.20補充
2006~2013歷屆試題詳解
[url]http://203.72.198.200/sections/3150/pages/7369?locale=zh_tw[/url]
110.5.3補充
從\(z^{2014}=1\)的所有複數根中,任選相異兩根\(z_1,z_2\),則\(\displaystyle |\;z_1-z_2|\;<\frac{\sqrt{6}-\sqrt{2}}{2}\)的機率為[u] [/u]。
(2014TRML個人賽,106松山工農代理,[url]https://math.pro/db/thread-2837-1-1.html[/url])
從\(z^{2020}=1\)的所有複數根中,任選相異兩根\(z_1,z_2\),則\(\displaystyle |\;z_1-z_2|\;<\frac{\sqrt{6}-\sqrt{2}}{2}\)的機率為[u] [/u]。
(109中壢高中代理,happysad解題[url]https://math.pro/db/viewthread.php?tid=3339&page=1#pid21461[/url])
(110桃園高中,[url]https://math.pro/db/thread-3512-1-1.html[/url])
TRML 團體賽2014
求解ˇˇ2014TRML團體賽
5.
已知正數x,y,z滿足\( 4x^2+y^2+2z^2=10 \),則\( \sqrt{2xy}+3z \)的最大值為[u] [/u]。
8.
若\( tan20^{\circ}+4sin20^{\circ} \)之值為a,則\( a^2= \)[u] [/u]。
回復 2# dtc5527 的帖子
5.\( \displaystyle 4x^2+y^2+2z^2=10 \to 5-z^2=\frac{4x^2+y^2}{2}\ge 2xy \)
\( \to \sqrt{2xy}+3z \le \sqrt{5-z^2}+3z=\sqrt{5(1-cos^2 a)}+3 \sqrt{5}cos a=\sqrt{5}sin a+3 \sqrt{5}cos a \le 5 \sqrt{2} \)
(上式令\( z=\sqrt{5}cos a \)再用三角疊合)
8.
\( \displaystyle a=tan20^{\circ}+4sin20^{\circ}=\frac{sin20^{\circ}+2(2sin20^{\circ}cos20^{\circ})}{cos20^{\circ}}=\frac{sin20^{\circ}+2sin(60^{\circ}-20^{\circ})}{cos20^{\circ}} \)
\( \displaystyle =\frac{sin20^{\circ}+2(\frac{\sqrt{3}}{2}cos20^{\circ}-\frac{1}{2}sin20^{\circ})}{cos20^{\circ}}=\frac{\sqrt{3}cos20^{\circ}}{cos20^{\circ}}=\sqrt{3} \)
\( a^2=3 \)
回復 2# dtc5527 的帖子
團體 5. 由柯西不等式有 \( (4x^2 + y^2 + 2z^2)(1+1+18) \geq (2x + y + 6z)^2 \)再由算幾不等式有 \( 2x + y \geq 2 \sqrt{2xy} \)
結合兩式得 \( 10 \times 20 = (4x^2 + y^2 + 2z^2)(1+1+18) \geq 4 (\sqrt{2xy} + 3z)^2 \)
故 \( \displaystyle \sqrt{2xy} + 3z \leq \sqrt{\frac{200}{4}} = 5 \sqrt{2} \)
依等號成立條件,可找到(驗證) \( \displaystyle x = \frac{1}{2\sqrt{2}}, y =2x. z=6x \) 時達最大值 \( 5 \sqrt{2} \)
回復 4# tsusy 的帖子
結合科西及算幾不等式,讚。 問一下同分賽
坐標平面上到兩直線 y= 2 x 及 y = −2 x 的距離之和小於或等於 12 的點所形成的區域面積為 ?
求純幾何解法。
回復 6# bch0722b 的帖子
由於對稱,先只考慮第一象限的點(1) 該點在 x 軸上
該點到 y = 2x 和 y = -2x 的距離相等,該點從原點出發一直到 A(3√5,0),該點到 y = 2x 和 y = -2x 的距離和都 ≦ 12
(2) 該點在 y 軸上
該點到 y = 2x 和 y = -2x 的距離相等,該點從原點出發一直到 B(0,6√5),該點到 y = 2x 和 y = -2x 的距離和都 ≦ 12
(3) 該點在 y = 2x 上
該點從原點出發一直到 C(3√5,6√5) ,該點到 y = -2x 的距離都 ≦ 12
易知在矩形 OACB 內及其周界上點都符合題意
所求 = 3√5 * 6√5 * 4 = 360 恩~~
今年trml真令人跌破眼鏡,今年個人賽全國有7人全對,有4位是國中生,其中又有一位是全國金牌獎!
不知大家的看法如何?到底是國中生越來越強,還是~~高中生能力有待加強??
回顧今年trml題目其實並沒有很難的題目,不過這種結果的確出乎意料!!
或者說拚imo的高手們不習慣寫這種比速度的競速型比賽,而是喜歡長久思考的樂趣!? 想請教團體賽#9 先謝謝!
若實數\(a\)使得方程式\(5x^3-5(a+2)x^2+(76a-1)x-132a+2=0\)的三個根均為正整數,則\(a=\)[u] [/u]。
回復 9# 瓜農自足 的帖子
團體賽第9題易看出有一根為2
原題簡化為\(5{{x}^{2}}-5ax+\left( 66a-1 \right)=0\)的兩根均為正整數
…… 團體賽第1題:設 \(\sqrt{2014}\) 的小數部分為 \(a\),若正整數 \(n\) 滿足\(\displaystyle\frac{n}{88}<a<\frac{n+1}{88}\),則 \(n=\)_______。
解答:
\(\displaystyle44^2=1936, 45^2=2025\Rightarrow 88a=88\left(\sqrt{2014}-44\right)=88\cdot\frac{78}{\sqrt{2014}+44}\)
因為 \(44<\sqrt{2014}<45\),所以 \(\displaystyle88\cdot\frac{78}{45+44}<88\frac{78}{\sqrt{2014}+44}<88\cdot\frac{78}{44+44}\)
\(\Rightarrow 77.xxx<88a<78\)
\(\Rightarrow n=77\)
頁:
[1]