根與係數的關係
設方程式 \(ax^2+bx+c=0,(a\neq0)\) 有兩根\(\alpha,\beta\),則\[ax^2+bx+c=a(x-\alpha)(x-\beta)\]
\[\alpha+\beta=-\frac{b}{a}\]
\[\alpha\beta=\frac{c}{a}\]
\[a\alpha^2+b\alpha+c=0 且 a\beta^2+b\beta+c=0\]
推廣可得
設方程式 \(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0,(a_n\neq0)\) 有\(n\)個根\(\alpha_1,\alpha_2,\cdots,\alpha_n\),則
\[a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=a(x-\alpha_{1})(x-\alpha_{2})\cdots(x-\alpha_{n})\]
\[\alpha_1+\alpha_2+\cdots+\alpha_n=-\frac{a_{n-1}}{a_n}\]
\[\mathop\Sigma\limits_{1\leq i<j\leq n}{\alpha_i\alpha_j}=\frac{a_{n-2}}{a_n}\]
\[\mathop\Sigma\limits_{1\leq i<j<k\leq n}{\alpha_i\alpha_j\alpha_k}=-\frac{a_{n-3}}{a_n}\]
\[\alpha_1\alpha_2\cdots\alpha_n=(-1)^n\frac{a_0}{a_n}\]
\[a\alpha_i^2+b\alpha_i+c=0,\forall 1\leq i\leq n\] 推廣可得那行開始(算第1行)
第3行,等式的右邊的a,可以改成a_n
另外,最後一行是錯的
是 a_n × α_i^n + a_n-1 × α_i^(n-1) + … + a_1 ×α_i + a_0 = 0, for all 1≦i≦n
頁:
[1]