99中山女高
回復 1# bugmens 的帖子
關於填充3. 已知複數 \( z_1=3+2i \) , 複數 \( ∣z_2−11−4 i∣=3 \),則對任意實數 \( \alpha \) ,試求 \( ∣z_1−\alpha∣+∣z_2−\alpha∣ \) 的最小值?這個題目的陳述是否有些不當?會讓我覺得:複數 \( z_2 \) 是一個定值,只是未知,我們只對 \( \alpha \) 變數求最小值。答案須以 \( z_2 \) 表示之:\( |z_2-3+2i| \)。
但一般出題,應該不會刻意讓答案有個 \( z_2 \) 在那裡,是我的理解錯誤(誤解),亦或是文字上的瑕疵? 第 3 題
複數\(z_2\)在高斯平面上是圓心\(O(11,4)\),半徑為 3 的圓
實數\(\alpha\)代表\(x\) 軸上的點
所求\(=(3,-2)\)到圓\(O\)的最短距離 = 7 想請問第2題
回復 4# satsuki931000 的帖子
計算\(\displaystyle \frac{1}{sin15^{\circ}sin30^{\circ}}+\frac{1}{sin30^{\circ}sin45^{\circ}}+\frac{1}{sin45^{\circ}sin60^{\circ}}+\ldots+\frac{1}{sin150^{\circ}sin165^{\circ}}\)=?[解答]
\(\displaystyle =\frac{1}{sin15^{\circ}}\left[\frac{sin(30^{\circ}-15^{\circ})}{sin15^{\circ}sin30^{\circ}}+
\frac{sin(45^{\circ}-30^{\circ})}{sin30^{\circ}sin45^{\circ}}+
\frac{sin(60^{\circ}-45^{\circ})}{sin45^{\circ}sin60^{\circ}}+\ldots
\frac{sin(165^{\circ}-150^{\circ})}{sin150^{\circ}sin165^{\circ}} \right]\)
利用\(\displaystyle \frac{sin(30^{\circ}-15^{\circ})}{sin15^{\circ}sin30^{\circ}}=\frac{sin30^{\circ}cos15^{\circ}-sin15^{\circ}cos30^{\circ}}{sin15^{\circ}sin30^{\circ}}=cot15^{\circ}-cot30^{\circ}\)
原式可改寫成
\(\displaystyle =\frac{1}{sin15^{\circ}}\left[ (cot15^{\circ}-cot30^{\circ})+(cot30^{\circ}-cot45^{\circ})+\ldots+(cot150^{\circ}-cot165^{\circ}) \right]\)
接著後面就交給你了:)
回復 5# CyberCat 的帖子
了解了 謝謝頁:
[1]