102南科實中
大家來看看吧~~~如果有去考的分享一下計算題吧~~~
回復 1# drexler5422 的帖子
1.設\(a\)為正數且\(a\ne 1\),則指數函數\(y=a^x\)與對數函數\(y=log_ax\)的圖形會有[u] [/u]個交點。(試將所有可能的答案寫出,全對始計分)
我想問一下第一題為什麼會有三個交點?
回復 2# drexler5422 的帖子
[url]https://www.google.com.tw/search?q=%E6%8C%87%E6%95%B8%E5%B0%8D%E6%95%B8%E4%BA%A4%E9%BB%9E&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:zh-TW:official&client=firefox-a[/url]瑋岳學長講的
點下去第一個
看第一段就是結論~
有興趣再詳看~ 第一題好像是這樣
有錯請告知,感謝><
\( \displaystyle \sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\ldots+\sqrt{1+\frac{1}{999^2}+\frac{1}{1000^2}} \)
\( \displaystyle =\sum_{k=1}^{999}\sqrt{1+\frac{1}{k^2}+\frac{1}{(k+1)^2}}=\sum_{k=1}^{999} \sqrt{\frac{k^4+2k^3+3k^2+2k+1}{k^2(k+1)^2}} \)
\( \displaystyle =\sum_{k=1}^{999} \sqrt{\frac{(k^2+k+1)^2}{k^2(k+1)^2}}=\sum_{k=1}^{999}\frac{k^2+k+1}{k(k+1)}=\sum_{k=1}^{999} \left( 1+\frac{1}{k(k+1)} \right)=999 \frac{999}{1000} \)
回復 3# ichiban 的帖子
感謝你的回應~~~ 大家看看計算七有錯說一下嚕~~~~
證明:\( n \in N \),\( \displaystyle 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots+\frac{1}{n^2}\le 2 \)
PF:
∵\( \displaystyle 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots+\frac{1}{n^2}<1+\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{(n-1) \times n}+ \)
且\( \displaystyle 1+\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{(n-1) \times n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{n-1}-\frac{1}{n}=2-\frac{1}{n}\le 2 \)
∴\( n \in N \),\( \displaystyle 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots+\frac{1}{n^2}\le 2 \) 請教填充6
我一開始想用點到橢圓的距離
但想不下去了
謝謝 [quote]原帖由 [i]drexler5422[/i] 於 2013-6-17 04:49 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=8552&ptid=1649][img]https://math.pro/db/images/common/back.gif[/img][/url]
這一題想要請教大家一下~~~~ [/quote]
你的題目好像有錯~~
計算2
請參考如下網址
(96學年度中山大學雙週一題第一學期第三題)
[url]https://math.pro/temp/qq53.pdf[/url]
[url]http://www.math.nsysu.edu.tw/~problem/2007f/3ans.pdf[/url] 數值有錯請告知
以下提供個人的解法提示
#1
\[\sqrt {1 + \frac{1}{{{k^2}}} + \frac{1}{{{{(k + 1)}^2}}}} = \sqrt {{{(1 + \frac{1}{{k(k + 1)}})}^2}} = 1 + \frac{1}{{k(k + 1)}}\]
#5
\[\frac{{{x_n}}}{{{{( - 1)}^n}}} = - 3 \cdot \frac{{{x_{n - 1}}}}{{{{( - 1)}^{n - 1}}}} + 2,let{\rm{ }}{y_n} = \frac{{{x_n}}}{{{{( - 1)}^n}}}\]
#6
我是用旋轉,以L為軸,將Q旋轉至P、L所在的平面
其他作法可參考[url=http://tw.myblog.yahoo.com/sincos-heart/article?mid=4924&prev=4925&next=-1]信欣茗數學園地[/url]
#7
\[\frac{1}{{{n^2}}} < \frac{1}{{n(n - 1)}} = \frac{1}{{n - 1}} - \frac{1}{n}\]
99基隆高中考過類似的,是證明3次方的情形
想問 填充6 和 計算3
想問 填充6 和 計算3 這兩題完全沒有頭緒 = =+ [quote]原帖由 [i]shiauy[/i] 於 2013-6-17 07:26 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=8556&ptid=1649][img]https://math.pro/db/images/common/back.gif[/img][/url]數值有錯請告知
另外第六題數值有人記得嗎? [/quote]
一心老師,第三題數據不是這樣喔〜
分子第二個括號內是x^2n +x
計三
分成0~1跟1~2分別討論函數,再去積分填六
6.設\( \displaystyle f(\theta)=\left(\frac{3}{2}-2cos\theta \right)^2+(3-sin \theta)^2 \),則當\(sin 2 \theta=\)[u] [/u]時,\(f(\theta)\)有最小值。
看成\(\displaystyle A(\frac{3}{2},3)\)到橢圓\(\displaystyle \frac{x^2}{4}+y^2=1\)的最短距離,設切點\((2cos\theta,sin\theta)\),則切線\(cos\theta x+2sin\theta y=2\),過\(A\)與切線垂直的方程式為\(2sin\theta x-cos\theta y=3sin\theta-3cos\theta\),切點帶入可得\(sin\theta cos\theta=sin\theta-cos\theta\),由\(cos\theta^2+sin\theta^2=(sin\theta-cos\theta)^2+2sin\theta cos\theta\)
,\((sin\theta cos\theta)^2+sin\theta cos\theta=1\),則\(sin2\theta^2+4sin2\theta-4=0\),\(sin2\theta=-2\pm2 \sqrt{2}\)(負不合) 這第六題~我覺得此方式還蠻簡當明瞭的,可參考看看:)
有問題也要讓我知道唷~謝謝 [quote]原帖由 [i]thepiano[/i] 於 2013-6-18 06:39 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=8570&ptid=1649][img]https://math.pro/db/images/common/back.gif[/img][/url]
第三行有問題 [/quote]
哈~少打一個負號~已修正
感謝鋼琴老師~ 有人可以把計算第三詳細的寫出解法嗎?微積分有點生疏了
極限積分交換後要怎麼處理?
回復 17# shiauy 的帖子
一心兄,你被欺騙了... 這題沒有要做極限交換就 \( f(x) \) 在 \( (0,1) \) 和在 \( (1,2) \) 的極限直接算出來就好了
然後很 Easy 地積分 計算第三答案是7/6
[[i] 本帖最後由 dream10 於 2013-6-19 01:21 AM 編輯 [/i]]
回復 11# zeratulok 的帖子
計算 3. 找到的考古題,所以 #11 樓的說法很可能正確,因為常常都不改數字的\( \int_{0}^{2}\lim\limits _{n\to\infty}\frac{(2-x)(x+x^{n})}{1+x^{n}}dx \) 之值為 ________。 (99彰化女中、99中正預校)
如果是這組數字,答案的確是 \( \frac76 \)
解. \( \frac{x+x^{n}}{1+x^{n}}\to\begin{cases}
1 & ,\,x>1\\
x & ,\,0<x<1
\end{cases} \) as \( x \to \infty \) 之後積分,即得 \( \frac76 \)。 出題教授有努力的把 n 次方改成 (2n)次方啦
不過答案都一樣
頁:
[1]
2