Math Pro 數學補給站's Archiver

凡走過必留下痕跡,
所有的經驗都有它的價值。

judy75 發表於 2013-4-12 15:53

請教遞迴一題!(費氏數列與分項對消)

滿足\(a_1=a_2=1\),\(a_{n+2}=a_n+a_{n+1}\)的數列\(\langle\;a_n\rangle\;\)稱為費氏數列,則\(\displaystyle \frac{1}{a_1a_3}+\frac{1}{a_2a_4}+\ldots+\frac{1}{a_na_{n+2}}+=\)[u]   [/u]。
請教大家,感謝!

weiye 發表於 2013-4-12 17:24

回復 1# judy75 的帖子

一般項 \(\displaystyle\frac{1}{a_k a_{k+2}}=\left(\frac{1}{a_k}-\frac{1}{a_{k+2}}\right)\frac{1}{a_{k+2}-a_k}\)

        \(\displaystyle=\left(\frac{1}{a_k}-\frac{1}{a_{k+2}}\right)\frac{1}{a_{k+1}}\)

        \(\displaystyle=\frac{1}{a_k a_{k+1}}-\frac{1}{a_{k+1}a_{k+2}}\)

        其中 \(k=1,2,3,\cdots\)

因此,\(\displaystyle\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{a_k a_{k+2}}=\lim_{n\to\infty}\sum_{k=1}^{n}\left(\frac{1}{a_k a_{k+1}}-\frac{1}{a_{k+1}a_{k+2}}\right)\)

          \(\displaystyle=\lim_{n\to\infty}\left(\frac{1}{a_1 a_2}-\frac{1}{a_{n+1}a_{n+2}}\right)\)

易知 \(\displaystyle\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_{n+2}=\infty\)[可證 \(a_k\geq n, \forall n\geq5\)]

因此,所求=\(\displaystyle\frac{1}{a_1 a_2}=1\)

judy75 發表於 2013-4-13 13:28

回復 2# weiye 的帖子

了解了!感謝您的答覆!辛苦了!

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.