請教遞迴一題!(費氏數列與分項對消)
滿足\(a_1=a_2=1\),\(a_{n+2}=a_n+a_{n+1}\)的數列\(\langle\;a_n\rangle\;\)稱為費氏數列,則\(\displaystyle \frac{1}{a_1a_3}+\frac{1}{a_2a_4}+\ldots+\frac{1}{a_na_{n+2}}+=\)[u] [/u]。請教大家,感謝!
回復 1# judy75 的帖子
一般項 \(\displaystyle\frac{1}{a_k a_{k+2}}=\left(\frac{1}{a_k}-\frac{1}{a_{k+2}}\right)\frac{1}{a_{k+2}-a_k}\)\(\displaystyle=\left(\frac{1}{a_k}-\frac{1}{a_{k+2}}\right)\frac{1}{a_{k+1}}\)
\(\displaystyle=\frac{1}{a_k a_{k+1}}-\frac{1}{a_{k+1}a_{k+2}}\)
其中 \(k=1,2,3,\cdots\)
因此,\(\displaystyle\lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{a_k a_{k+2}}=\lim_{n\to\infty}\sum_{k=1}^{n}\left(\frac{1}{a_k a_{k+1}}-\frac{1}{a_{k+1}a_{k+2}}\right)\)
\(\displaystyle=\lim_{n\to\infty}\left(\frac{1}{a_1 a_2}-\frac{1}{a_{n+1}a_{n+2}}\right)\)
易知 \(\displaystyle\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_{n+2}=\infty\)[可證 \(a_k\geq n, \forall n\geq5\)]
因此,所求=\(\displaystyle\frac{1}{a_1 a_2}=1\)
回復 2# weiye 的帖子
了解了!感謝您的答覆!辛苦了!頁:
[1]