101明道中學
可否請教一題遞迴問題a[size=1]1[/size][size=2]=0,
a[size=1]n+1[size=2]=(1+a[size=1]n[/size][/size][/size])/(3-a[size=1]n[/size])
求a[size=1]n[size=2]的一般式?
謝謝
[/size][/size]
[/size]
回復 1# m4su6 的帖子
先解特徵根 \(\displaystyle x=\frac{1+x}{3-x}\) ,得 \(x=1\) (重根)令 \(\displaystyle b_n=\frac{1}{a_n-1}\)
則 \(\displaystyle b_{n+1}=\frac{1}{a_{n+1}-1}=\frac{1}{\frac{1+a_n}{3-a_n}-1}=\frac{1}{a_n-1}+\frac{-1}{2}=b_n-\frac{1}{2}\)
因此 \(<b_n>\) 數列是首項為 \(-1\) 且公差為 \(\displaystyle -\frac{1}{2}\) 的等差數列,
得 \(\displaystyle b_n=-1+\left(n-1\right)\cdot\left(-\frac{1}{2}\right) =-\frac{n+1}{2}\)
且 \(\displaystyle b_n=\frac{1}{a_n-1}\Rightarrow a_n=\frac{1}{b_n}+1=\frac{n-1}{n+1}\) 當初解到重根後就不知怎麼繼續下手,
謝謝瑋岳老師 :)
頁:
[1]