假設P在雙曲線左葉,F'(0,4) ,F(10,0) ,
K為F' 以x+y=8為對稱軸的對稱點,則K(4,8)
依光學性質與雙曲線定義可知
PF-PF' =PF-PK=KF=10=2a ,a=5
2c=FF'=2*29^0.5 ,c=29^0.5
b^2=c^2-a^2=29-25=4 ,b=2
所求=2b^2/a=8/5 ... [/quote]
請教Ellipse老師
這個題目怎麼看出,切線的切點在F'的這一側
謝謝 [size=4]2. (1*2 / 2*3) + (2*2² / 3*4) + (3*2³ / 4*5) + ......+ (10*2¹⁰ / 11*12) [/size][size=3]的最簡分數?[/size]
[size=4][/size]
[size=4][size=3][/size][/size]
[size=4][size=3]一般項為[/size] n*2ⁿ / (n+1)(n+2),n = 1~10[/size]
[size=4][/size]
[size=3]以下希望將其拆成 "形式相同,變數等距" 的兩項之差以對消。[/size]
[size=3][/size]
[size=4][size=3]首先:[/size] [color=blue]A/(n+1) - B/(n+2)[/color] [/size]
[size=4][/size]
[size=4][size=3]又合併後會提出[/size] 2ⁿ[/size][size=3],故改為:[/size]
[size=4][/size]
[size=4][color=blue]C*2ⁿ/(n+1) - D*2ⁿ⁺¹/(n+2)[/color] [/size][size=3](形式相同,變數等距)[/size]
[size=3][/size]
[size=3]通分一下,知: [size=4]C*(n+2) - D*(2n+2) = n [/size][/size][size=3]→ 取 (C, D) = (-1, -1)[/size]
[size=3][/size]
[size=3]故一般項為[size=4] [color=#0000ff]2ⁿ⁺¹/(n+2)[/color][color=#000000] [/color][color=blue]- [/color][color=blue]2ⁿ/(n+1)[/color][/size][/size]
[size=4][color=#0000ff][/color][/size]
[size=3]對消後,剩 - (1 - 2048/12) = 509/3[/size]
[size=3][/size]
[size=3][/size]
頁:
1
[2]