Math Pro 數學補給站's Archiver

你未必出類拔萃,但肯定與眾不同。

cplee8tcfsh 發表於 2012-5-5 21:32

101 中一中 校慶搶答

一中校慶(水上運動會)2012.05.01 當天辦給學生的有獎搶答活動如附件
有興趣的
請參考

hugo964 發表於 2012-5-19 22:35

想請問一下A-5,A-11,A-22如何解呢??謝謝

vicki8210 發表於 2012-5-20 11:13

也可以請問一下B-2及B-3嗎?
謝謝^^

weiye 發表於 2012-6-17 22:51

回復 2# hugo964 的帖子

剛回完朋友 A5 題,趕快PO上來。:P

第 A5 題:

令 A1 到 A6 移動分鐘數的期望值為 \(a\),

 A2 到 A6 移動分鐘數的期望值為 \(b\),

 A3 到 A6 移動分鐘數的期望值為 \(c\),

由對稱性,可得 A4 到 A6 移動分鐘數的期望值亦為 \(a\),且 A5 到 A6 移動分鐘數的期望值為 \(c\),

可列出關係式如下:

\(\displaystyle a=\frac{1}{2}\cdot(1+b)+\frac{1}{2}\cdot(1+c)\)

\(\displaystyle b=\frac{1}{2}\cdot(1+a)+\frac{1}{2}\cdot(1+c)\)

\(\displaystyle c=\frac{1}{4}\cdot1+\frac{1}{4}\cdot(1+c)+\frac{1}{4}\cdot(1+b)+\frac{1}{4}\cdot(1+a)\)

解得 \(a=10,b=10, c=8\)




第 A11 題:

至少有顯然解 \(x=y=z=1\),但答案卻沒有 \(3\),怪哉?

idontnow90 發表於 2012-7-3 18:57

可以請教第5題的3個關係式從何得知呢?感恩~

weiye 發表於 2012-7-3 23:56

回復 5# idontnow90 的帖子

考慮下"一步"會走到哪裡,就可以知道了。:)

katama5667 發表於 2012-7-5 22:54

回復 4# weiye 的帖子

A-11

這題的答案確實有問題,  

因為 \((x,y,z)=(1,1,1), (4,4,-5), (4,-5,4),(-5,4,4)\) 都是解沒有錯!  

B-3

令 \(n=2008\) ,將 \(b=1-a\) 代入第二式中   

\(\frac{a^2}{c}+\frac{(1-a)^2}{n-c}=\frac{1}{n}\Rightarrow a^2(n-c)n+nc(1-2a+a^2)=c(n-c)\)
   
\(\Rightarrow  a^2n^2-2anc+c^2\Rightarrow (an-c)^2=0\Rightarrow c=na\)

則所求式=      

\(\large \frac{a^{n+1}}{(na)^{n}}+\frac{(1-a)^{n+1}}{(n-na)^{n}}=\frac{a}{n^{n}}+\frac{1-a}{n^{n}}=(\frac{1}{n})^{n} \)

[[i] 本帖最後由 katama5667 於 2012-7-5 11:43 PM 編輯 [/i]]

andyhsiao 發表於 2012-7-22 14:45

B-2
1986年美國數學邀請賽題目

cplee8tcfsh 發表於 2012-8-8 11:39

回復 2# hugo964 的帖子

A-11
當初打題目漏了一個條件(y<x<=z)
忘記訂正...

A-22
若任取相異的二數最近的距離=1  明顯不符題意
若任取相異的二數最近的距離=2  明顯不符題意
故任取相異的二數最近的距離>=3
S(3n) ={102,105,108,..,2010} , 有637數
S(3n+1)]{103,106,109,...,2011}, 有637數
S(3n+2)={101,104,107,...,2012}, 有638數
答: 638

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.