求極限值 lim_{n→∞}[n/(1^2+n^2)+n/(2^2+n^2)+...n/(n^2+n^2)]
\(\displaystyle \lim_{n\to \infty}\left[\frac{n}{1^2+n^2}+\frac{n}{2^2+n^2}+\ldots+\frac{n}{n^2+n^2}\right]\)答案是π/4不知道該用什麼方法切入
麻煩大家提供一些想法~
回復 1# palin 的帖子
\(\displaystyle \lim_{n\to\infty}\sum_{k=1}^n\frac{n}{k^2+n^2}\)\(\displaystyle =\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\left(\frac{k}{n}\right)^2+1}\frac{1}{n}\)
\(\displaystyle =\int_0^1\frac{1}{x^2+1}dx\)
(令 \(x=\tan\theta\Rightarrow dx=\sec^2\theta d\theta\))
\(\displaystyle =\int_0^{\frac{\pi}{4}}\frac{1}{\tan^2\theta+1}\cdot\sec^2\theta d\theta\)
\(\displaystyle =\int_0^{\frac{\pi}{4}}1 d\theta\)
\(\displaystyle =\frac{\pi}{4}\)
回復 2# weiye 的帖子
謝謝~頁:
[1]