空間中的曲面(2x+3y+z)^2+(3x-2y+z)^2+(x+3y+2z)^2=1所圍體積為何?
空間中的曲面,\(S\):\((2x+3y+z)^2+(3x-2y+z)^2+(x+3y+2z)^2=1\) 所圍出的體積為多少??解答:
令 \(p=2x+3y+z, q=3x-2y+z, r=x+3y+2z\)
\(p^2+q^2+q^2=1\) 所圍區域是個球~半徑為 \(1\),體積為 \(\displaystyle \frac{4}{3}\times\pi\times 1^3=\frac{4\pi}{3}\)
因為 \(\displaystyle \left[\begin{array}{c}p\\q\\r\end{array}\right]=\left[\begin{array}{ccc}2&3&1\\3&-2&1\\1&3&2\end{array}\right]\left[\begin{array}{c}x\\y\\z\end{array}\right]\)
所以,所求體積=\(\displaystyle\frac{\displaystyle\frac{4\pi}{3}}{\Bigg|\left|\begin{array}{ccc}2&3&1\\3&-2&1\\1&3&2\end{array}\right|\Bigg|}=\frac{1}{18}\times\frac{4\pi}{3}=\frac{2\pi}{27}.\)
112.7.25補充
給定空間中一封閉區面\(S\):\((2x+3y+z)^2+(3x-2y+z)^2+(x+3y+2z)^2=1\),求所圍出的體積=[u] [/u]。
(112東石高中,[url]https://math.pro/db/thread-3778-1-1.html[/url])
頁:
[1]