Math Pro 數學補給站's Archiver

時間就像一張網,
你撒在哪裡,
你的收獲就在那裡。

weiye 發表於 2012-3-12 00:45

證明:202,203,...,238 連寫成的 N=202203‧‧‧238 為 74 的倍數

試證:將連續的整數 \(202,203,...,238\) 連寫成 \(N\),即 \(N=202203204‧‧‧‧‧‧238\),

   求證 \(N\) 為 \(74\) 的倍數。


證明:

\(37\times27=999=10^3-1\)

對自然數 \(k\),因為 \(10^3-1\Big| 10^{3k}-1\)

  可知 \(10^{3k}-1\) 皆為 \(37\) 的倍數。

\(N=202\cdot 10^{36\times3}+203\cdot 10^{35\times3}+\cdots+237\cdot10^3+238\)

  \(=202\cdot\left(10^{36\times3}-1\right)+203\cdot\left(10^{35\times3}-1\right)+\cdots+237\cdot\left(10^{3}-1\right)\)

   \(+\left(202+203+\cdots+237+238\right)\)

因此若要檢查 \(202,203,...,238\) 連寫成的 \(N\) 是否為 \(37\) 的倍數

  只要檢查 \(202+203+...+238\) 是否為 \(37\) 的倍數即可


由 \(\displaystyle 202+203+...+238=\frac{(202+238)\cdot37}{2}=220\times37\)

  可知 \(202+203+...+238\) 為 \(37\) 的倍數

  可得 \(N\) 亦為 \(37\) 的倍數

且因為 \(N\) 的個位數字為偶數,且 \(2\) 與 \(37\) 互質,

所以 \(N\) 為 \(74(=2\times37)\) 的倍數。

頁: [1]

論壇程式使用 Discuz! Archiver 6.1.0  © 2001-2007 Comsenz Inc.