Math Pro 數學補給站's Archiver

我真心在追求我的夢想時,
每一天都是繽紛的。
因為我知道每個小時都是實現理想的一部份。

darkmatter 發表於 2012-3-3 14:04

x^2+3x+1/5x(是5x分之一)求最小值

x^2+3x+1/5x(是5x分之一)求最小值

weiye 發表於 2012-3-3 14:49

回復 1# darkmatter 的帖子

\(\displaystyle x^2+3x+\frac{1}{5x}\),求最小值

當 \(x\to0^-\) 時,\(x^2+3x\to0\) 且 \(\displaystyle\frac{1}{5x}\to-\infty\)

\(\Rightarrow\displaystyle\lim_{x\to0^-}\left(x^2+3x+\frac{1}{5x}\right)=-\infty\)

故,\(\displaystyle x^2+3x+\frac{1}{5x}\) 的[b]最小值[/b]並不存在。

darkmatter 發表於 2012-3-3 15:25

應該有答案吧?
因為在-1和-2之間有一個最小值~
但我不知是多少?
是-3/2嗎?

weiye 發表於 2012-3-3 18:03

回復 3# darkmatter 的帖子

看您的敘述,我猜您要問的應該是[b]相對極小值[/b],而非[b]最小值[/b]吧?

除了微分找臨界點(用三次多項式的公式解,找微分後醜醜的解 ==)

目前小弟還沒想到更便捷的方法,看來要有勞站上其他高手了。:)

[attach]948[/attach]

Ellipse 發表於 2012-3-4 16:06

[quote]原帖由 [i]weiye[/i] 於 2012-3-3 06:03 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=4863&ptid=1301][img]https://math.pro/db/images/common/back.gif[/img][/url]
看您的敘述,我猜您要問的應該是相對極小值,而非最小值吧?

除了微分找臨界點(用三次多項式的公式解,找微分後醜醜的解 ==)

目前小弟還沒想到更便捷的方法,看來要有勞站上其他高手了。:)

948 ... [/quote]

我看這題可能只能用weiye老師說的用微分方法找最小值了 (當x>0)
粗估範圍
當x>0時
y=x^2+3x+1/(5x)
>=3x+1/(5x)
>=2[3x/(5x)]^0.5  (算幾不等式)
=2*(3/5)^0.5
約1.54919

而實際最小值約1.61093

註:這種題目通常用算幾不等式來處理
而這題的數據可能無法用此方法

這題可能是自己出的,應該不是考試的題目

[[i] 本帖最後由 Ellipse 於 2012-3-4 04:17 PM 編輯 [/i]]

darkmatter 發表於 2012-3-4 20:52

此題為奧林匹克考古題

Ellipse 發表於 2012-3-4 21:01

[quote]原帖由 [i]darkmatter[/i] 於 2012-3-4 08:52 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=4865&ptid=1301][img]https://math.pro/db/images/common/back.gif[/img][/url]
此題為奧林匹克考古題 [/quote]

是那一年的?我去查一下

darkmatter 發表於 2012-3-5 08:46

[url=http://www.olpc.org.tw/olpcorg_answer/2012olpcorg_Information-2-lpi.zip][color=#3b5998]http://www.olpc.org.tw/olpcorg_answer/2012olpcorg_Information-2-lpi.zip[/color][/url] 要下載檔案.


是2011年

weiye 發表於 2012-3-5 10:20

回復 8# darkmatter 的帖子

看來題目真的是寫『 \(\displaystyle x^2+3x+\frac{1}{5x}\),求最小值』

那答案應該就要寫「不存在」,或是要寫『 \(-\infty\)』也可以。



ps. 那個 AIMO(亞洲數學奧林匹克?) 不知道是什麼樣的組織呀?

 我剛剛看名稱以為是官方的 APMO(亞太數學奧林匹亞),

 不過仔細一看,卻又不一樣,

 它跟 IMO 有關係嗎?

Ellipse 發表於 2012-3-5 17:18

[quote]原帖由 [i]weiye[/i] 於 2012-3-5 10:20 AM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=4868&ptid=1301][img]https://math.pro/db/images/common/back.gif[/img][/url]
看來題目真的是寫『 \(\displaystyle x^2+3x+\frac{1}{5x}\),求最小值』

那答案應該就要寫「不存在」,或是要寫『 \(-\infty\)』也可以。



ps. 那個 AIMO(亞洲數學奧林匹克?) 不知道是什麼樣的組織呀?

 我剛剛看名稱 ... [/quote]

那weiye老師第一次解的答案就是正確的
這題重點不是在問x>0,y的極小值(老師都做不出來了,更何況是國中生)
只是單純考一點極限的概念

所以以後若是知道題目從哪出
請加上出處,以方便日後的人搜尋

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.