Math Pro 數學補給站's Archiver

當你真心想要完成一件事的時候,
整個宇宙都會聯合起來幫助你完成。

thankyou 發表於 2012-1-6 22:59

a,b正整數,500<a<1000,100<b<1000,loga尾數是logb尾數3倍

請教一題對數題目,謝謝!!

a,b為正整數,\( 500<a<1000 \),\( 100<b<1000 \),\( log a \)的尾數是\( log b \)的尾數的3倍,求a與b?

weiye 發表於 2012-1-7 10:26

回復 1# thankyou 的帖子

題目: \(a,b\) 為正整數,\(500<a<1000\),\(100<b<1000\), \(\log a\) 的尾數是 \(\log b\) 的尾數的 \(3\) 倍,求 \(a\) 與 \(b\)?

解答:

  \(500<a<1000 \Rightarrow 3-\log2<\log a<3\)

  \(100<b<1000 \Rightarrow 2<\log b<3\)

  令 \(\log b = 2+x\),其中 \(0<x<1\)

  則 \(\log a = 2+3x\) 且滿足 \(0<3x<1\)

  利用上兩式消去尾數,

  可得 \(3 \log b - \log a = 4\)

  \(\Rightarrow\displaystyle \frac{b^3}{a} = 10^4\)

  \(\Rightarrow b^3 = a\times 2^4\times 5^4\)

  因為 \(a, b\) 皆為正整數

  可令 \(a= 2^2\times 5^2\times k\),其中 \(k\) 為完全立方數

  且因為 \(500<a<1000\),所以 \(a= 800\)

  \(\Rightarrow b=\sqrt[3]{8\times 10^6} = 200\)

頁: [1]

論壇程式使用 Discuz! Archiver 6.1.0  © 2001-2007 Comsenz Inc.