100北港高中
題目和答案請見附件想請教15.18.20
各位老師好~想請教15.18.20這三題該如何下手?
謝謝大家
回復 2# milkie1013 的帖子
18參考一下 我想請教第4題 謝謝
回復 4# Herstein 的帖子
第 4 題:\(f(x)=(x-m)^2 -m^2+2m+3\)
[img]http://i.imgur.com/BLnOF.png[/img]
case i: 若 \(0\leq m\leq 4,\)
則 \(f(m)>0 \Rightarrow -m^2+2m+3>0 \Rightarrow -1<m<3\)
且因為 \(0\leq m\leq 4\),所以 \(0\leq m<3\)
case ii: 若 \(m<0,\)
則 \(\displaystyle f(0)>0 \Rightarrow 2m+3>0 \Rightarrow m>-\frac{3}{2}\)
且因為 \(m<0\),所以 \(\displaystyle -\frac{3}{2}<m<0\)
case iii: 若 \(m>4,\)
則 \(\displaystyle f(4)>0 \Rightarrow -6m+19>0\Rightarrow m<\frac{19}{6}\)
且因為 \(m<4\),所以 矛盾
由 case i,ii, 或 iii,
可得 \(\displaystyle -\frac{3}{2}<m<3\) 第 15 題:
\(\displaystyle x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
因此,
\(\displaystyle x-y= \frac{1}{z} - \frac{1}{y} = \frac{y-z}{yz}\)
且 \(\displaystyle y-z= \frac{1}{x} - \frac{1}{z} = \frac{z-x}{zx}\)
且 \(\displaystyle z-x= \frac{1}{y} - \frac{1}{x} = \frac{x-y}{xy}\)
所以,
\(\displaystyle x-y = \frac{x-y}{x^2y^2z^2}\Rightarrow \left(x-y\right)\left(1-\frac{1}{x^2y^2z^2}\right)=0\)
因為 \(x,y\) 相異,所以 \(x^2y^2z^2=1\)
因為 \(x,y,z\) 皆為正數,所以 \(xyz=1\)
故, \(\log x + \log y + \log z = \log(xyz)=0\)
回復 2# milkie1013 的帖子
20.假設半衰期為t年(1/2)^(10/t)=1/5<~~~衰變了80%
兩邊取log就結束了 想請教第14題
感謝
回復 8# money 的帖子
這題考到翻過來了 應該有速解的算法 但我都還是這樣算若(2+根號3)^n=Xn+Yn*根號3
顯然(2-根號3)^n=Xn-Yn*根號3.....二項展開一下就可看出
就可以分別求Xn,Yn 求極限 [quote]原帖由 [i]JOE[/i] 於 2011-7-23 06:43 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=4125&ptid=1192][img]https://math.pro/db/images/common/back.gif[/img][/url]
這題考到翻過來了 應該有速解的算法 但我都還是這樣算
若(2+根號3)^n=Xn+Yn*根號3
顯然(2-根號3)^n=Xn-Yn*根號3.....二項展開一下就可看出
就可以分別求Xn,Yn 求極限 ... [/quote]
感謝jJOE大
我也是把兩式相加減
因為漏了根號3
極限怎麼算都是1(糗) 請教第16題
感謝
回復 11# money 的帖子
[nC(n-1,0)*C(n,n-1)]+[nC(n-1,1)*C(n,n-2)]+[nC(n-1,2)*C(n,n-3)]+...+[nC(n-1,n-1)*C(n,0)]=n[C(n-1,0)*C(n,n-1)+C(n-1,1)*C(n,n-2)+C(n-1,2)*C(n,n-3)+...+C(n-1,n-1)*C(n,0)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=n[C(2n-1,n-1)]<~~~~~(2n-1)物取(n-1)個
=n(2n-1)!/(n-1)!(n)!
=(2n-1)!/[(n-1)!]^2
只會這樣輸入,多擔待
關鍵就是把係數往C裡面放,把C裡面的n拉出來
回復 12# JOE 的帖子
唉這個題目如果在考場上遇到
我一定是當場傻住
感謝JOE大賜教
小弟又上了一課 [quote]原帖由 [i]老王[/i] 於 2011-7-19 08:13 PM 發表 [url=https://math.pro/db/redirect.php?goto=findpost&pid=4102&ptid=1192][img]https://math.pro/db/images/common/back.gif[/img][/url]
18
參考一下 [/quote]
18題,看完樓上的解,可否詳細說明一下,為何FH=FA,這一題,主要是這裏看不大出來。
[[i] 本帖最後由 peter579 於 2011-7-27 11:29 AM 編輯 [/i]] 6 :再查一下書,好像不能將COSx=[1-(tan x/2)^2] / [1+(tan x/2)^2] sinx=[2(tan x/2)] / [1+(tan x/2)^2] 代入,由判別式>=0來找範圍, 因為有類似解法,但這樣好像不能解。
可否請教一下大家。
7、a_n-2=[(1+2+3+...n)^2-(1^2+2^2+3^2+....+n^2)]/2 且 a_n-1=1+2+....+n 可以解出來。
[[i] 本帖最後由 peter579 於 2011-7-27 04:39 PM 編輯 [/i]]
回復 14# peter579 的帖子
A為F對切線的對稱點,所以FH=HA關於第7 ,請教13
第7題a_n=1 a_n-1=-(所有根之和)=-(1+2+....+n)
所以最後算出來是 -(5/4) ?
6.令f(x)=k,整理一下 移項得到 (k-1)cosx-(k+1)sinx=2-2k
利用疊合 絕對值2-2k 小於根號(k-1)^2+(k+1)^2
兩邊平方解k範圍可得最大值.
請教13,謝謝 第7題、
a_n-2(第n-2項)=[(1+2+3+...n)^2-(1^2+2^2+3^2+....+n^2)]/2 =[ ((1+n)n/2)^2 - (n(n-1)(2n-1)/6 ] /2
a_n-1(第n-1項)= 1+2+....+n = (1+n)n/2 代入後,(1+n)n 可以約掉,應可以算出來了。
原式= 5/2[n(n+1)/4-(2n+1)/6]
---------------------------------- =5/4
n*n/2
不知若考第n-3項,會不會更複雜。
[[i] 本帖最後由 peter579 於 2011-7-27 03:59 PM 編輯 [/i]] 13 題
\(a>b>0\),橢圓\(\Gamma\):\(\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)的切線\(L\)交座標軸於\(A\)、\(B\)兩點,求線段\(\overline{AB}\)的最小值[u] [/u]。
[解答]
由 y=mx+根號(a^2m^2+b^2)
x=0
y=0 分別代入… 計算 AB^2= a^2m^2+b^2 +(a^2m^2+b^2)/m^ 2
= a^2m^2+b^2/m^ 2 + a^2+b^2 >= 2ab+ a^2+b^2 =(a+b)^2
AB最小值 a+b
112.7.11感謝thepiano補充
求橢圓\(\Gamma\):\(\displaystyle \frac{x^2}{9}+\frac{y^2}{4}=1\)上任一切線在第一象限被\(x\)軸、\(y\)軸截出之線段長的最小值為[u] [/u]。
(112羅東高工,[url]https://math.pro/db/viewthread.php?tid=3772&page=1#pid25292[/url]) 第5題 有問題,請教一下