100新北市國中聯招
現在才發現不會的題目還真的多~~真心酸可以請教以下這兩題嗎?
回復 1# chiang 的帖子
31.若\(x,y,z\)均為正數,且滿足\(\displaystyle x+\frac{1}{y}=5\),\(\displaystyle y+\frac{1}{z}=2\),\(\displaystyle z+\frac{1}{x}=1\),則\(x\cdot y\cdot z\)的乘積為何?
(A)1 (B)2 (C)5 (D)10
[解答]
由x+1/y=5,y+1/z=2,z+1/x=1三式相乘可得
(x+1/y)(y+1/z)(z+1/x)=5*2*1
xyz+(x+y+z)+(1/x+1/y+1/z)+1/xyz
=xyz+(x+1/y)+(y+1/z)+(z+1/x)+1/xyz
=xyz+5+2+1+1/xyz
=xyz+1/xyz+8=10
xyz+1/xyz=2
(xyz)^2-2xyz+1=0
(xyz-1)^2=0
所以xyz=1
故選(A)
-----------------------------------------------------------------
另解:
令x+1/y=5---(1),y+1/z=2---(2),z+1/x=1---(3)
由(1)得x=5-1/y=(5y-1)/y---(4)
由(2)得z=1/(2-y)---(5)
以(4)(5)代入(3)得
1/(2-y)+y/(5y-1)=1
==>(5y-1)+(2-y)y=(5y-1)(2-y)
==>-y^2+7y-1=-5y^2+11y-2
==>4y^2-4y+1=0
==>(2y-1)^2=0
==>y=1/2
代入(4)得x=(5/2-1)/(1/2)=3
代入(5)得z=1/(2-1/2)=2/3
所以xyz=3*(1/2)*(2/3)=1
故選(A)
回復 1# chiang 的帖子
4.已知圓\(O\)半徑為1,若長度為1的線段和圓\(O\)相切於線段中點,則所有滿足此性質的線段所占的面積為何?
(A)\(\displaystyle \frac{\pi}{4}\) (B)\(\displaystyle \frac{\pi}{2}\) (C)\(\pi\) (D)\(2\pi\)
[解答]
符合題意的所有線段所成之圖形為一環形
其內為半徑為1的圓
其外為半徑為根號[1^2+(1/2)^2]=根號(5/4)的圓
所以其面積為(5/4-1)Pi=1/4Pi
故選(A)
頁:
[1]