Math Pro 數學補給站's Archiver

時間,讓深的東西越來越深,
   讓淺的東西越來越淺。

tsusy 發表於 2013-5-5 23:36

回復 20# wooden 的帖子

把它真的展開看看,和要算的式子是否相同

wooden 發表於 2013-5-5 23:58

回復 21# tsusy 的帖子

我知道它的由來了,
感謝你

johncai 發表於 2014-1-14 13:23

不好意思。
我想請教一下第4題
為何s跟t都是雙重根?
先謝謝了。

weiye 發表於 2014-1-14 14:54

回復 23# johncai 的帖子

4.
已知曲線\(f(x)=x^4+4x^3-16x^2+6x-5\)在\(x=s\)與\(x=t\)(其中\(s\ne t\))時的切線重合,求\(|\;s-t|\;=\)[u]   [/u]

將以 \((s, f(s))\) 為切點的切線方程式 \(y-f(s) = f\,'(s) (x-s)\)

帶入 \(y=f(x)\) 可得 \(f(x)-f(s)-f\,'(s)(x-s)=0\)

因為相切,可知 \(f(x)-f(s)-f\,'(s)(x-s)=0\) 有 \(x=s\) 的重根,

同理,\(f(x)-f(t)-f\,'(t)(x-t)=0\) 有 \(x=t\) 的重根,

因為以 \((s, f(s))\) 為切點的切線與以 \((t, f(t))\) 為切點的切線相同,

所以 \(y-f(s) = f\,'(s) (x-s)\) 與 \(y-f(t) = f\,'(t) (x-t)\) 相同,

可知  \(f(x)-f(s)-f\,'(s)(x-s)=0\) 有 \(x=s\) 的重根,也有 \(x=t\) 的重根,

又因為 \(f(x)-f(s)-f\,'(s)(x-s)=0\) 為\(x\) 的四次方程式,且 \(s\neq t\),

因此 \(f(x)-f(s)-f\,'(s)(x-s)=0\) 有 \(x=t\) 二重根與 \(x=s\) 的二重根

\(\Rightarrow f(x)-f(s)-f\,'(s)(x-s)=(x-t)^2(x-s)^2\)

後面續原 #10 回覆。

aliher327 發表於 2024-2-28 22:18

正八面體題目請教

如右圖,有一正八面體\(ABCDEF\)的稜長為2,已知\(A\)在原點上,\(A,D,E\)皆落在\(xy\)平面上,\(C\)為\(xz\)平面上的一點,試求點\(C\)到\(x\)軸的距離為[u]   [/u]。

空間座標一題請教

113.3.31
題目和100北一女第5題相同,故將文章合併。

BambooLotus 發表於 2024-2-28 23:10

把\( C \)對\( x \)軸作垂線,利用正八面體兩面角\( \cos\theta=-\frac{1}{3} \)
再配上三垂線,就知道所求是\( \sqrt{3}\times\frac{2\sqrt{2}}{3} \)

不過去年段考我出這題,有學生反應示意圖有問題,因為以這種情形來看其實\( \overline{AE} \)會在\( y \)軸上

aliher327 發表於 2024-2-29 00:12

回覆 2# BambooLotus 的帖子

謝謝您的回霺

頁: 1 [2]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.