Math Pro 數學補給站's Archiver

除非太陽不再升起,
否則不能不達到目標。

liengpi 發表於 2011-4-23 11:01

99育成高中教甄

[attach]321[/attach]
99育成高中教甄的考題
供各位老師參考
但是我沒有解答
真是抱歉

bugmens 發表於 2011-4-23 17:53

1.將5個A、5個B及5個C等15個字母排成一列,使得前5個字母沒有A,中間5個字母沒有B,且最後5個字母沒有C,試問共有多少種可能的排列情形。
(2003AMC12,[url]https://math.pro/db/viewthread.php?tid=454[/url] )


4.設\( x,y \in R \),且\( |x|<1 \),\( \displaystyle |\; \frac{x-y}{1-xy} |\; <1 \),試求y之範圍?
(75日大自然組,高中數學101 P26,高中數學101修訂版 P26)


9.如圖所示,△ABE中,\( ∠BAE=90^o \),C、D為邊\( \overline{BE} \)上的三等分點,令\( \overline{BC}=\overline{CD}=\overline{DE}=a \),\( \overline{AC}=7 \),\( \overline{AD}=9 \),求a?
(高中數學101 P129,高中數學101修訂版 P130)

類題
三角形ABC中,\( ∠C=90^o \),D、E為\( \overline{AB} \)之三等分點,且\( \overline{CD}=sinX \),\( \overline{CE}=cosX \),\( 0^o<X<90^o \),\( \overline{AB}= \)?
(97全國高中聯招,[url]http://forum.nta.org.tw/examservice/showthread.php?t=48958[/url])


10.
如下圖,四邊形ABCD中,\( \overline{AB}// \overline{CD} \)且\( \overline{BC}=\overline{AD} \),又\( \overline{AC} \)及\( \overline{BD} \)的交點為P,設\( \overline{BP} \),\( \overline{CP} \),\( \overline{AD} \)的中點依次為X,Y,Z,且△APB為正三角形,試證△XYZ為正三角形。
(91北一女數學競賽)
[url]http://www.fg.tp.edu.tw/~math/exam/group2/pdf2/921-1a.pdf[/url]


我將題目重新打字,方便網友列印
OpenOffice或LibreOffice才能開啟

[[i] 本帖最後由 bugmens 於 2011-5-31 06:30 AM 編輯 [/i]]

bugmens 發表於 2011-6-2 23:41

7.設有一球心為原點O,半徑為1的球面S,一光源於\( P(2,0,1) \)照射球面S,投射在平面E:\( x+2=0 \)上所成的區域為A,若點\( Q(-2,u,v) \)落在區域A內,試求\( u \)和\( v \)的關係式?
[size=5]我看錯題目了,將\( x+2=0 \)看成\( z+2=0 \),這個作品大概花了我1個月的時間,實在沒力氣再重做一次。抱歉[/size]

動畫一:為什麼是拋物線
(1)\( \overline{PD},\overline{PF} \)都是圓的切線,得到\( \overline{PD}=\overline{PF} \)
(2)\( \overline{PD} \)是圓錐上母線的其中一段,移動到上方
(3)\( \overline{PD} \)平移到\( \overline{PE} \),得到\( \overline{PD}=\overline{PE} \)
\( \overline{PF}=\overline{PE} \)
區域為拋物線,F為焦點,V為頂點,L為準線

動畫二:求拋物線方程式
(1)計算直線方程式
(2)將球面放大和\( z+2=0 \)相切
(3)計算拋物線頂點V
(4)重新計算大球面的球心坐標
(5)得到拋物線焦點F,焦距c
(6)求出拋物線方程式

[[i] 本帖最後由 bugmens 於 2011-6-2 11:44 PM 編輯 [/i]]

johncai 發表於 2013-11-25 14:37

我想問一下填充第七題
要如何證明軌跡是一個橢圓
因為平面E沒有跟球相切
還是可以用圓錐截痕的方法證明嗎?
謝謝~

weiye 發表於 2013-11-25 16:36

回復 4# johncai 的帖子

光打在球上,影子區域會是直圓錐的一部份,

題中平面與(影子)直圓錐所截的區域為橢圓。



證明請見圖解: [url]http://www.clowder.net/hop/Dandelin/Dandelin.html[/url]

       [url]http://en.wikipedia.org/wiki/Dandelin_spheres[/url]

       [url]http://mathworld.wolfram.com/DandelinSpheres.html[/url]

johncai 發表於 2013-11-25 17:58

回復 5# weiye 的帖子

所以可以想成把題目中的小球往外擴大到跟平面相切嗎?
謝謝

weiye 發表於 2013-11-25 19:46

回復 6# johncai 的帖子

確是如此。

mathelimit 發表於 2014-11-1 22:41

回復 7# weiye 的帖子

一些關於此題的數據 請教一下是否正確,我計算的答案,a=8/3,b=4根號3/3,c=4/3。

thepiano 發表於 2014-11-2 08:53

回復 8# mathelimit 的帖子

寸絲老師的筆記有提供答案
[url]http://tsusy.files.wordpress.com/2013/01/math-note-18-20-by-tsusy.pdf[/url]
在 P8 最上面,文件上的頁碼是 155

tsusy 發表於 2014-11-2 09:23

回復 9# thepiano 的帖子

但看起來,我的 \( b^2 \) 寫錯寫成倒數了,mathelimit 的 \( a,b,c \) 是正確的

順帶來個另解. 先考慮平面 \( E':  x+1=0 \) 上的投影橢圓 \( \Gamma \)(平面與球面 S 相切)。

\( \Gamma \) 的長軸在在 xz 平面上,計算 \( P(2,0,1) \) 對圓 \( \begin{cases} x^2+z^2=1 \\ y=0 \end{cases} \) 之切線

可得 \( \Gamma \) 之長軸長 \( 2a' = 4 \),兩端點為 \( (-1,0,1), (-1,0,-3) \)

又 \( E' \) 與 球面 \( S \) 相切於 \( \Gamma \) 之一焦點 \( (-1,0,0) \),故 \( a'-c' =1 \Rightarrow c' =1 \)。故 \( a'=2, b' = \sqrt{3}, c' = 1 \)。

以 \( P \) 為中心,將 \( \Gamma \) 伸縮 \( \frac43 \) 倍即為所求,故所求橢圓之  \( \displaystyle a = \frac83, b= \frac43\sqrt{3}, c = \frac43\),中心點 \( (-2,0,1-\frac83) \),\( u,v \) 滿足 \( \displaystyle \frac{u^{2}}{\displaystyle \frac{16}{3}}+\frac{(v+\frac{5}{3})^{2}}{\displaystyle \frac{64}{9}}\leq1 \)

[[i] 本帖最後由 tsusy 於 2014-11-2 09:42 AM 編輯 [/i]]

mathelimit 發表於 2014-11-2 18:26

哈哈,感謝兩位老師,都很有耐心地回答我的問題呀。 XD

mathca 發表於 2015-12-21 15:04

回復 1# liengpi 的帖子

請教第6題,感謝。

thepiano 發表於 2015-12-21 17:17

回復 12# mathca 的帖子

參考 [url]http://www.shiner.idv.tw/teachers/viewtopic.php?t=2504[/url]

mathca 發表於 2015-12-21 17:42

回復 13# thepiano 的帖子

如此一來,一定要用三次方判別式不可了。

mathca 發表於 2015-12-27 14:35

回復 1# liengpi 的帖子

請教第8題,感謝。

thepiano 發表於 2015-12-27 17:09

回復 15# mathca 的帖子

第 8 題
[url]http://www.shiner.idv.tw/teachers/viewtopic.php?t=2475#p6017[/url]

頁: [1]

論壇程式使用 Discuz! Archiver   © 2001-2022 Comsenz Inc.